首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Locusts lay their eggs by digging into a substrate using rhythmic opening and closing movements of ovipositor valves at the end of the abdomen. The digging rhythm is inhibited by chemosensory stimulation of chemoreceptors on the valves. Nitric oxide (NO) modulated the effects of chemosensory stimulation on the rhythm. Stimulation with either sucrose or sodium chloride (NaCl) stopped the digging rhythm, whereas simultaneous bath application of the NO inhibitor, N-nitro-L-arginine methyl ester (L-NAME), increased the duration for which the digging rhythm stopped. Increasing NO levels caused a significant reduction in the cessation of the rhythm in response to the same 2 chemicals. Bath applying cyclic guanosine monophosphate (cGMP), the soluble guanylate inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and the generic protein kinase inhibitor H-7 had no effect on the duration for which the rhythm stopped in response to NaCl stimulation. Conversely, bath application of cGMP and ODQ resulted in a significant decrease and increase, respectively, in the duration for which the digging rhythm stopped when stimulated with sucrose. Moreover, bath application of the selective protein kinase G (PKG) inhibitor KT-5823 also resulted in a significant increase in the duration of cessation of the rhythm when stimulated with sucrose. Results suggest that NO modulates the behavioral responses to NaCl via a cGMP/PKG-independent pathway while modulating the responses to sucrose via a NO-cGMP/PKG-dependent pathway.  相似文献   

2.
The mechanism by which vascular endothelial growth factor (VEGF) regulates endothelial nitric-oxide synthase (eNOS) expression is presently unclear. Here we report that VEGF treatment of bovine adrenal cortex endothelial cells resulted in a 5-fold increase in both eNOS protein and activity. Endothelial NOS expression was maximal following 2 days of constant VEGF exposure (500 pM) and declined to base-line levels by day 5. The elevated eNOS protein level was sustained over the time course if VEGF was co-incubated with L-N(G)-nitroarginine methyl ester, a competitive eNOS inhibitor. Addition of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, prevented VEGF-induced eNOS up-regulation. These data suggest that nitric oxide participates in a negative feedback mechanism regulating eNOS expression. Various approaches were used to investigate the role of the two high affinity VEGF receptors in eNOS up-regulation. A KDR receptor-selective mutant increased eNOS expression, whereas an Flt-1 receptor-selective mutant did not. Furthermore, VEGF treatment increased eNOS expression in a KDR but not in an Flt-1 receptor-transfected porcine aorta endothelial cell line. SU1498, a selective inhibitor of the KDR receptor tyrosine kinase, blocked eNOS up-regulation, thus providing further evidence that the KDR receptor signals for eNOS up-regulation. Finally, treatment of adrenal cortex endothelial cells with VEGF or phorbol ester resulted in protein kinase C activation and elevated eNOS expression, whereas inhibition of protein kinase C with isoform-specific inhibitors abolished VEGF-induced eNOS up-regulation. Taken together, these data demonstrate that VEGF increases eNOS expression via activation of the KDR receptor tyrosine kinase and a downstream protein kinase C signaling pathway.  相似文献   

3.
4.
Neuronal nitric-oxide synthase (nNOS) is a constitutively expressed enzyme responsible for the production of nitric oxide (NO*) from l-arginine and O2. Nitric oxide is an intra- and intercellular messenger that mediates a diversity of signaling pathways in target cells. In the absence of l-arginine, nNOS has been shown to generate superoxide (O2*). Superoxide, either directly or through its self-dismutation to H2O2, is likewise believed to be a cell-signaling agent. Because nNOS can generate NO* and O2*, we examined the activation of cellular signal transduction pathways in nNOS-transfected cells grown in the presence or absence of l-arginine. Spin trapping/EPR spectroscopy confirmed that stimulated nNOS-transfected cells grown in an l-arginine environment secreted NO* into the surrounding milieu. Production of NO* blocked Ca2+ ionophore-induced activation of the ERK1/2 through a mechanism involving inhibition of the Ras G-protein and Raf-1 kinase. In contrast, ERK activation was largely unaffected in nNOS-transfected cells grown in l-arginine-free media. Inhibition of nNOS-generated NO* with the competitive NOS inhibitor, NG-nitro-l-arginine methyl ester, in cells grown in l-arginine restored ERK1/2 activation to levels similar to that found when nNOS was activated in l-arginine-free media. These findings indicate that nNOS can differentially regulate the ERK signal transduction pathway in a manner dependent on the presence of l-arginine and the production of NO*.  相似文献   

5.
Reactive oxygen species can function as intracellular messengers, but linking these signaling events with specific enzymes has been difficult. Purified endothelial nitric-oxide synthase (eNOS) can generate superoxide (O(2)) under special conditions but is only known to participate in cell signaling through NO. Here we show that eNOS regulates tumor necrosis factor alpha (TNFalpha) through a mechanism dependent on the production of O(2) and completely independent of NO. Expression of eNOS in transfected U937 cells increased phorbol 12-myristate 13-acetate-induced TNFalpha promoter activity and TNFalpha production. N(omega)-Methyl-l-arginine, an inhibitor of eNOS that blocks NO production but not its NADPH oxidase activity, did not prevent TNFalpha up-regulation. Likewise, Gln(361)eNOS, a competent NADPH oxidase that lacks NOS activity, retained the ability to increase TNFalpha. Similar to the effect of eNOS, a O(2) donor dose-dependently increased TNFalpha production in differentiated U937 cells. In contrast, cotransfection of superoxide dismutase with eNOS prevented TNFalpha up-regulation, as did partial deletion of the eNOS NADPH binding site, a mutation associated with loss of O(2) production. Thus, eNOS may straddle a bifurcating pathway that can lead to the formation of either NO or O(2), interrelated but often opposing free radical messengers. This arrangement has possible implications for atherosclerosis and septic shock where endothelial dysfunction results from imbalances in NO and O(2) production.  相似文献   

6.
7.
Endothelin-1 has dual vasoactive effects, mediating vasoconstriction via ETA receptor activation of vascular smooth muscle cells and vasorelaxation via ETB receptor activation of endothelial cells. Although it is commonly accepted that endothelin-1 binding to endothelial cell ETB receptors stimulates nitric oxide (NO) synthesis and subsequent smooth muscle relaxation, the signaling pathways downstream of ETB receptor activation are unknown. Here, using a model in which we have utilized isolated primary endothelial cells, we demonstrate that ET-1 binding to sinusoidal endothelial cell ETB receptors led to increased protein kinase B/Akt phosphorylation, endothelial cell nitric-oxide synthase (eNOS) phosphorylation, and NO synthesis. Furthermore, eNOS activation was not dependent on tyrosine phosphorylation, and pretreatment of endothelial cells with pertussis toxin as well as overexpression of a dominant negative G-protein-coupled receptor kinase construct that sequesters betagamma subunits inhibited Akt phosphorylation and NO synthesis. Taken together, the data elucidate a G-protein-coupled receptor signaling pathway for ETB receptor-mediated NO production and call attention to the absolute requirement for heterotrimeric G-protein betagamma subunits in this cascade.  相似文献   

8.
Endothelium of the cerebral blood microvessels, which constitutes the major component of the blood-brain barrier, controls leukocyte and metastatic cancer cell adhesion and trafficking into the brain parenchyma. In this study, using rat primary brain microvascular endothelial cells (BMEC), we demonstrate that the vascular endothelial growth factor (VEGF), a potent promoter of angiogenesis, up-regulates the expression of the intracellular adhesion molecule-1 (ICAM-1) through a novel pathway that includes phosphatidylinositol 3 OH-kinase (PI3K), AKT, and nitric oxide (NO), resulting in the migration of BMEC. Upon VEGF treatment, AKT is phosphorylated in a PI3K-dependent manner. AKT activation leads to NO production and release and activation-deficient AKT attenuates NO production stimulated by VEGF. Transfection of the constitutive myr-AKT construct significantly increased basal NO release in BMEC. In these cells, VEGF and the endothelium-derived NO synergistically up-regulated the expression of ICAM-1, which was mediated by the PI3K pathway. This activity was blocked by the PI3K-specific inhibitor, wortmannin. Furthermore, VEGF and NO significantly increased BMEC migration, which was mediated by the up-regulation of ICAM-1 expression and was dependent on the integrity of the PI3K/AKT/NO pathway. This effect was abolished by wortmannin, by the specific ICAM-1 antibody, by the specific inhibitor of NO synthase, N(G)-l-monomethyl-arginine (l-NMMA) or by a combination of wortmannin, ICAM-1 antibody, and l-NMMA. These findings demonstrate that the angiogenic factor VEGF up-regulates ICAM-1 expression and signals to ICAM-1 as an effector molecule through the PI3K/AKT/NO pathway, which leads to brain microvessel endothelial cell migration. These observations may contribute to a better understanding of BMEC angiogenesis and the physiological as well as pathophysiological function of the blood-brain barrier, whose integrity is crucial for normal brain function.  相似文献   

9.
Hypochlorous acid/hypochlorite, generated by the myeloperoxidase/H(2)O(2)/halide system of activated phagocytes, has been shown to oxidize/modify low density lipoprotein (LDL) in vitro and may be involved in the formation of atherogenic lipoproteins in vivo. Accordingly, hypochlorite-modified (lipo)proteins have been detected in human atherosclerotic lesions where they colocalize with macrophages and endothelial cells. The present study investigates the influence of hypochlorite-modified LDL on endothelial synthesis of nitric oxide (NO) measured as formation of citrulline (coproduct of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) upon cell stimulation with thrombin or ionomycin. Pretreatment of human umbilical vein endothelial cells with hypochlorite-modified LDL led to a time- and concentration-dependent inhibition of agonist-induced citrulline and cGMP synthesis compared with preincubation of cells with native LDL. This inhibition was neither due to a decreased expression of endothelial NO synthase (eNOS) nor to a deficiency of its cofactor tetrahydrobiopterin. Likewise, the uptake of l-arginine, the substrate of eNOS, into the cells was not affected. Hypochlorite-modified LDL caused remarkable changes of intracellular eNOS distribution including translocation from the plasma membrane and disintegration of the Golgi location without altering myristoylation or palmitoylation of the enzyme. In contrast, cyclodextrin known to deplete plasma membrane of cholesterol and to disrupt caveolae induced only a disappearance of eNOS from the plasma membrane that was not associated with decreased agonist-induced citrulline and cGMP formation. The present findings suggest that mislocalization of NOS accounts for the reduced NO formation in human umbilical vein endothelial cells treated with hypochlorite-modified LDL and point to an important role of Golgi-located NOS in these processes. We conclude that inhibition of NO synthesis by hypochlorite-modified LDL may be an important mechanism in the development of endothelial dysfunction and early pathogenesis of atherosclerosis.  相似文献   

10.
We have previously shown that treatment of rats with the nitric oxide (NO) synthase inhibitor N6-nitro-L-arginine methyl ester for 4 weeks resulted in the augmentation of blood pressure and enhanced levels of Gialpha proteins. The present studies were undertaken to investigate if NO can modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMC) and primary cultured cells from aorta of Sprague-Dawley rats were used for these studies. The cells were treated with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) for 24 h and the expression of Gialpha proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [alpha-32P]ATP. Treatment of cells with SNAP (100 microM) or SNP (0.5 mM) decreased the expression of Gialpha-2 and Gialpha-3 by about 25-40% without affecting the levels of Gsalpha proteins. The decreased expression of Gialpha proteins was reflected in decreased Gi functions (receptor-independent and -dependent) as demonstrated by decreased or attenuated forskolin-stimulated adenylyl cyclase activity by GTPgammaS and inhibition of adenylyl cyclase activity by angiotensin II and C-ANP4-23, a ring-deleted analog of atrial natriuretic peptide (ANP) that specifically interacts with natriuretic peptide receptor-C (NPR-C) in SNAP-treated cells. The SNAP-induced decreased expression of Gialpha-2 and Gialpha-3 proteins was not blocked by 1H[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase, or KT5823, an inhibitor of protein kinase G, but was restored toward control levels by uric acid, a scavenger of peroxynitrite and Mn(111)tetralis (benzoic acid porphyrin) MnTBAP, a peroxynitrite scavenger and a superoxide dismutase mimetic agent that inhibits the production of peroxynitrite, suggesting that NO-mediated decreased expression of Gialpha protein was cGMP-independent and may be attributed to increased levels of peroxynitrite. In addition, Gsalpha-mediated stimulation of adenylyl cyclase by GTPgammaS, isoproterenol, and forskolin was significantly augmented in SNAP-treated cells. These results indicate that NO decreased the expression of Gialpha protein and associated functions in VSMC by cGMP-independent mechanisms. From these studies, it can be suggested that NO-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which NO regulates blood pressure.  相似文献   

11.
Tumor angiogenesis and immune response have in common to be cell recognition mechanisms, which are based on specific adhesion molecules and dependent on nitric oxide (NO). The aim of the present study is to deepen the mechanisms of angiogenesis and inflammation regulation by NO to find out the molecular regulation processes that govern endothelial cell permeability and leukocyte transmigration.Effects of NO, either exogenous or produced in hypoxic conditions, were studied on microvascular endothelial cells from skin and lymph node because of their strong involvement in melanoma progression. We found that NO down-regulation of pseudo-vessel formation was linked to a decrease in endothelial cell ability to adhere to each other which can be explain, in part, by the inhibition of PECAM-1/CD31 expression. On the other hand, NO was shown to be able to decrease leukocyte adhesion on an endothelial monolayer, performed either in static or in rolling conditions, and to modulate differentially CD34, ICAM-1/CD54, ICAM-2/CD102 and VCAM-1/CD106 expression.In conclusion, during angiogenesis and leukocyte recruitment, NO regulates cell interactions by controlling adhesion molecule expression and subsequently cell adhesion. Moreover, each endothelial cell type presents its own organospecific response to NO, reflecting the functions of the tissue they originate from.  相似文献   

12.
R Xu  J R Sowers  D F Skafar  J L Ram 《Life sciences》2001,69(23):2811-2817
The interaction between hydrocortisone and estradiol on the regulation of endothelial nitric oxide synthase (eNOS) expression was investigated in human umbilical vein endothelial cells (HUVECs). Following incubation in medium containing dextran-coated-charcoal-stripped serum (DCC-stripped medium) for 4 days, incubation of HUVECs with 0.1 nM estradiol for 24 hr in the absence of hydrocortisone increased levels of eNOS mRNA measured by ribonuclease protection assay above control (0 nM estradiol). 2 microM hydrocortisone applied for 24 hr preceding and during estradiol application inhibited the estradiol-elicited increase in eNOS mRNA levels, reducing mRNA levels from 134% +/- 14% of control to 85% +/- 5% of control. Significant (ANOVA, p<0.01) reductions of estradiol-mediated increases of mRNA levels occurred over a range of hydrocortisone concentrations (10 nM, p<0.05; 2 microM, p<0.05; n=3-12). In the presence of 2 microM hydrocortisone, 10 nM estradiol significantly reduced eNOS mRNA levels to 59% +/- 3% of control. The ability of hydrocortisone to block or reverse the estradiol-mediated increase in eNOS mRNA levels may provide a link between elevated hydrocortisone levels and decreased NO production, potentially contributing to the development of hypertension and cardiovascular disease in vivo and antagonizing cardioprotective effects of estrogens.  相似文献   

13.
Nitric oxide (NO), produced by endothelial (e) nitric oxide synthase (NOS), is a critical mediator of vascular function and growth in the developing lung. Pulmonary eNOS expression is diminished in conditions associated with altered pulmonary vascular development, suggesting that eNOS may be modulated by changes in pulmonary artery endothelial cell (PAEC) growth. We determined the effects of cell growth on eNOS expression in cultured ovine fetal PAEC studied at varying levels of confluence. NOS enzymatic activity was sixfold greater in quiescent PAEC at 100% confluence compared with more rapidly replicating cells at 50% confluence. To determine if there is a reciprocal effect of NO on PAEC growth, studies of NOS inhibition or the provision of exogenous NO from spermine NONOate were performed. Neither intervention had a discernable effect on PAEC growth. The influence of cell growth on NOS activity was unique to pulmonary endothelium, because varying confluence did not alter NOS activity in fetal systemic endothelial cells. The effects of cell growth induced by serum stimulation were also evaluated, and NOS enzymatic activity was threefold greater in quiescent, serum-deprived cells compared with that in serum-stimulated cells. The increase in NOS activity observed at full confluence was accompanied by parallel increases in eNOS protein and mRNA expression. These findings indicate that eNOS gene expression in fetal PAEC is upregulated during cell quiescence and downregulated during rapid cell growth. Furthermore, the interaction between cell growth and NO in the PAEC is unidirectional.  相似文献   

14.
We used a two-compartment coculture model comprising human endothelial cells (EC) and non-small cell lung carcinoma (CA) cells to study capillary formation. Elevated NO concentrations, contributed in part by CA cells, lead to inhibited capillary formation (Phillips PG, Birnby LM, Narendran A, and Milonovich WL. Am J Physiol Lung Cell Mol Physiol 281: L278-L290, 2001). Here we demonstrate using gelatin substrate zymography that high NO concentrations, whether produced endogenously or by NO donor spermine-NONOate or peroxynitrite-generating compound SIN-1, significantly inhibit MMP-9 expression and activation. Furthermore, high NO concentrations decrease Cav-1 abundance and alter its cellular distribution in EC. Cav-1 is essential for capillary formation in this model because Cav-1 antisense treatments targeted to EC significantly inhibit capillary formation. Laser confocal microscopy demonstrated extensive colocalization of MMP-9 with Cav-1 in sprouting EC, primarily at the basolateral surfaces of EC in focal structures associated with directed migration. This codistribution was NO concentration dependent, and elevated NO concentrations lead to marked dissociation of these two proteins. We propose that compartmentalization of MMP-9 within caveolar structures does occur, and that this could facilitate directed proteolysis essential for early migratory and invasive processes. Our data suggest elevated NO concentrations could impact on capillary formation via a combination of direct effects on MMP activation and by altering the distribution or abundance of Cav-1. Consequences of Cav-1 alterations may include impaired activation of proteolytic enzymes that utilize caveolar structure for stabilization and/or compartmentalization of MMP-9 as well as other putative members of an ECM proteolytic cascade.  相似文献   

15.
The nitric-oxide synthase (NOS) catalyzes the oxidation of L-arginine to L-citrulline and NO through consumption of oxygen bound to the heme. Because NO is produced close to the heme and may bind to it, its subsequent role in a regulatory mechanism should be scrutinized. We therefore examined the kinetics of NO rebinding after photodissociation in the heme pocket of human endothelial NOS by means of time-resolved absorption spectroscopy. We show that geminate recombination of NO indeed occurs and that this process is strongly modulated by L-Arg. This NO rebinding occurs in a multiphasic fashion and spans over 3 orders of magnitude. In both ferric and ferrous states of the heme, a fast nonexponential picosecond geminate rebinding first takes place followed by a slower nanosecond phase. The rates of both phases decreased, whereas their relative amplitudes are changed by the presence of L-Arg; the overall effect is a slow down of NO rebinding. For the isolated oxygenase domain, the picosecond rate is unchanged, but the relative amplitude of the nanosecond binding decreased. We assigned the nanosecond kinetic component to the rebinding of NO that is still located in the protein core but not in the heme pocket. The implications for a mechanism of regulation involving NO binding are discussed.  相似文献   

16.
beta-Adrenergic receptors (betaAR) play an important role in vasodilation, but the mechanisms whereby adrenergic pathways regulate the endothelial isoform of nitric-oxide synthase (eNOS) are incompletely understood. We found that epinephrine significantly increases eNOS activity in cultured bovine aortic endothelial cells (BAEC). Epinephrine-dependent eNOS activation was accompanied by an increase in phosphorylation of eNOS at Ser(1179) and with decreased eNOS phosphorylation at the inhibitory phosphoresidues Ser(116) and Thr(497). Epinephrine promoted activation of the small G protein Rac1 and also led to the activation of protein kinase A. All of these responses to epinephrine in BAEC were blocked by the beta(3)AR blocker SR59230A. We transfected and validated duplex small interfering RNA (siRNA) constructs to selectively "knock down" specific signaling proteins in BAEC. siRNA-mediated knockdown of Rac1 completely blocked all beta(3)AR signaling to eNOS and also abrogated epinephrine-dependent cAMP-dependent protein kinase (PKA) and Akt activation. However, siRNA-mediated knockdown of PKA did not affect Rac1 activation by epinephrine but did attenuate Akt activation by epinephrine. These findings indicate that Rac1 is an upstream regulator of beta(3)AR signaling to PKA and to eNOS and identify a novel beta(3)AR --> Rac1 --> PKA --> Akt pathway in endothelium. We exploited the p21-activated kinase pulldown assay to identify proteins associated with activated Rac1 and found that epinephrine stimulated the association of eNOS with Rac1; epinephrine-stimulated eNOS-Rac1 interactions were blocked by the beta(3)AR antagonist SR59230A. Co-transfection of eNOS cDNA with constitutively active Rac1 enhanced beta(3)AR-promoted eNOS-Rac1 association; co-transfection of eNOS with dominant negative Rac1 completely blocked the eNOS-Rac1 association. We also found that epinephrine-induced Rac1 --> PKA --> Akt pathway mediates beta(3)AR-mediated endothelial cell migration. Taken together, our data establish that the small G protein Rac1 is a key regulator of beta(3)AR signaling in cultured aortic endothelial cells with potentially important implications for the pathways involved in adrenergic modulation of eNOS pathways in the vascular wall.  相似文献   

17.
Expression of inducible nitric-oxide (NO) synthase (iNOS) and "high-output" production of NO by macrophages mediates many cytotoxic actions of these immune cells. However, macrophages have also been shown to express a constitutive NOS isoform, the function of which remains obscure. Herein, bone marrow-derived macrophages (BMDM?s) from wild-type and endothelial NOS (eNOS) knock-out (KO) mice have been used to assess the role of this constitutive NOS isoform in the regulation of macrophage activation. BMDM?s from eNOS KO animals exhibited reduced nuclear factor-kappaB activity, iNOS expression, and NO production after exposure to lipopolysaccharide (LPS) as compared with cells derived from wild-type mice. Soluble guanylate cyclase (sGC) was identified in BMDM?s at a mRNA and protein level, and activation of cells with LPS resulted in accumulation of cyclic GMP. Moreover, the novel non-NO-based sGC activator, BAY 41-2272, enhanced BMDM? activation in response to LPS, and the sGC inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one attenuated activation. These observations provide the first demonstration of a pathophysiological role for macrophage eNOS in regulating cellular activation and suggest that NO derived from this constitutive NOS isoform, in part via activation of sGC, is likely to play a pivotal role in the initiation of an inflammatory response.  相似文献   

18.
19.
The role of nitric oxide (NO) in the induction of angiogenesis was evaluated in a murine heart endothelioma cell line (H.end.FB) carrying the mT oncogene. Two clonal derivatives of H.end.FB, H80 and H73, exhibiting different NO synthase (NOS) activities were selected and used in the study. The relationship among NOS activity and tumor cell behaviour (growth, and angiogenic capacity) and the molecular control of gene expression were investigated. H.end.FB and H80 on one side and H73 on the other side exhibited the highest and lowest NOS activity, respectively. Cell growth was inversely correlated to the amount of NO produced by the cell lines. Conversely, in the avascular rabbit cornea assay, H.end.FB and H80 cells were strongly angiogenic, while H73 were poorly angiogenic, indicating that the ability of the cells to induce neovascularization was associated with the extent of NO produced. Consistently, systemic administration to rabbits of the NOS inhibitor N(w)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the angiogenicity of H.end.FB cells. RT-PCR evidenced that H.end.FB expressed mRNA for TGF-beta1 and all VEGF isoforms, VEGF165 being predominantly expressed. NOS inhibition reduced the basal expression of VEGF isoforms, while it markedly potentiated TGF-beta1 expression. These results indicate that the endogenous production of NO in tumor cells can serve as an autocrine/paracrine signalling mechanism of progression, by controlling angiogenic factor/modulator expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号