首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Gluconobacter oxydans oxidizes glucose via alternative pathways: one involves the non-phosphorylative, direct oxidation route to gluconic acid and ketogluconic acids, and the second requires an initial phosphorylation and then oxidation via the pentose phosphate pathway enzymes. During growth of G. oxydans in glucose-containing media, the activity of this pathway is strongly influenced by (1) the pH value of the environment and (2) the actual concentration of glucose present in the culture. At pH values below 3.5 the activity of the pentose phosphate pathway was completely inhibited resulting in an increased requirement of the organism for nutrient substances, and a poor cell yield. At pH 5.5 a triphasic growth response was observed when G. oxydans was grown in a defined medium. Above a threshold value of 5–15 mM glucose, oxidation of both glucose and gluconate by the pentose phosphate pathway enzymes was repressed, causing a rapid accumulation of gluconic acid in the culture medium. When growing under these conditions, a low affinity for the oxidation of glucose was found (K s=13 mM). Below this threshold glucose concentration, pentose phosphate pathway enzymes were synthesized and glucose was actively assimilated via this pathway. It was shown that de novo enzyme synthesis was necessary for increased pentose phosphate pathway activity and that assimilation of gluconate by washed cell suspensions was inhibited by glucose.  相似文献   

2.
To increase expression of lycopene synthetic genes crtE, crtB, crtI, and ipiHP1, the four exogenous genes were cloned into a high copy pTrc99A vector with a strong trc promoter. Recombinant Escherichia coli harboring pT-LYCm4 produced 17 mg/L of lycopene. The mevalonate lower pathway, composed of mvaK1, mvaK2, mvaD, and idi, was engineered to produce pSSN12Didi for an efficient supply of the lycopene building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Mevalonate was supplied as a substrate for the mevalonate lower pathway. Lycopene production in E. coli harboring pT-LYCm4 and pSSN12Didi with supplementation of 3.3 mM mevalonate was more than threefold greater than bacteria with pT-LYCm4 only. Lycopene production was dependent on mevalonate concentration supplied in the culture. Clump formation was observed as cells accumulated more lycopene. Further clumping was prevented by adding the surfactant Tween 80 0.5% (w/v), which also increased lycopene production and cell growth. When recombinant E. coli harboring pT-LYCm4 and pSSN12Didi was cultivated in 2YT medium containing 2% (w/v) glycerol as a carbon source, 6.6 mM mevalonate for the mevalonate lower pathway, and 0.5% (w/v) Tween 80 to prevent clump formation, lycopene production was 102 mg/L and 22 mg/g dry cell weight, and cell growth had an OD(600) value of 15 for 72 h.  相似文献   

3.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

4.
In Mycobacterium phlei TMC 1548 supplementation of growth medium containing 2% v/v glycerol with glucose (up to 5% w/v) resulted in an increase in growth (yield of cells), in amount of total phospholipids, and in each of the individual phospholipids (cardiolipin, phosphatidylethanolamine, phosphatidylinositol and its mannosides, and phosphatidylglycerol). However, when the medium was supplemented with a higher concentration (7.5% w/v) of glucose, both growth and phospholipid levels decreased to near control values (2% v/v glycerol alone). Cyclic AMP levels, which decreased at all concentrations of glucose, had no relation to phospholipid content or growth. The presence of a protein that possesses the property of stimulating c-AMP phosphodiesterase activity was recently demonstrated in Mycobacterium smegmatis (Falah et al. 1988. FEMS Microbiol. Lett. 56: 89-93). In M. phlei the level of this calmodulin-like protein (assayed by radioimmunoassay) changed with different concentrations of glucose in the growth medium in a manner identical with that of phospholipids. We suggest that in mycobacteria (i) intracellular calmodulin-like protein levels are affected by glucose concentration in the growth medium and (ii) there is a positive correlation between the levels of calmodulin-like protein, total and individual phospholipids, and growth (yield of cells) in glucose-grown M. phlei.  相似文献   

5.
Trehalose phosphorylase from the basidiomycete Pleurotus ostreatus (PoTPase) was isolated from fungal fruit bodies through approximately 500-fold purification with a yield of 44%. Combined analyses by SDS-PAGE and gelfiltration show that PoTPase is a functional monomer of approximately 55 kDa molecular mass. PoTPase catalyzes the phosphorolysis of alpha,alpha-trehalose, yielding alpha-d-glucose 1-phosphate (alphaGlc 1-P) and alpha-d-glucose as the products. The optimum pH of PoTPase for alpha,alpha-trehalose phosphorolysis and synthesis is 6.8 and 6.2, respectively. Apparent substrate binding affinities (K(m)) were determined at pH 6.8 and 30 degrees C: alpha,alpha-trehalose (79 mM); phosphate (3.5 mM); d-glucose (40 mM); alphaGlc 1-P (4.1mM). A series of structural analogues of d-glucose were tested as glucosyl acceptors for the enzymatic reaction with alphaGlc 1-P, and robust activity with d-mannose (3%), 2-deoxy d-glucose (8%), 2-fluoro d-glucose (15%) and 2-keto-d-glucose (50%) was detected. Arsenate replaces, with 30% relative activity, phosphate in the conversion of alpha,alpha-trehalose, and vanadate strongly inhibits the enzyme activity (K(i) approximately 4 microM). PoTPase has a half-life (t(0.5)) of approximately 1 h at 30 degrees C in the absence of stabilizing compounds such as alpha,alpha-trehalose (300 mM; t(0.5)=11.5 h), glycerol (20%, w/v; t(0.5)=6.5h) or polyethylenglycol (PEG) 4000 (26%, w/v; t(0.5)=70 h). Covalent modification of PoTPase with activated derivatives of PEG 5000 increases the stability by up to 600-fold. Sucrose was converted to alpha,alpha-trehalose in approximately 60% yield using a coupled enzyme system composed of sucrose phosphorylase from Leuconostoc mesenteroides, glucose isomerase from Streptomyces murinus and the appropriately stabilized PoTPase.  相似文献   

6.
The effects of concentrations of 2-phenoxyethanol of negligible bactericidal activity upon the rates of biosynthetic assimilation by Escherichia coli, of 14C-thymidine, 14C-uracil, 14C-phenylalanine and 14C-glucose, were assessed. Increasing the drug concentration from 0.05-0.4% w/v progressively increased inhibition of growth rate, measured as changes in optical density. Thymidine, uracil and glucose assimilation were inhibited to an extent similar to growth rate, whilst phenylalanine incorporation was markedly less sensitive at the lower concentrations (leads to 0.2% w/v). In addition to its previously observed roles in inhibiting oxidative phosphorylation and TCA cycle enzymes, it is suggested that 2-phenoxyethanol can exert a more direct inhibitory action upon DNA and RNA biosynthesis and possibly on protein biosynthesis.  相似文献   

7.
The observed equilibrium constants for hydrolysis (Kobs) of a phosphoester and a phosphoanhydride bond were measured under a variety of conditions likely to alter the interactions of reactants and products with water. These included increasing the pH of the medium from 5.0 to 10.0, increasing the MgCl2 concentration form 0 to 200 mM, and decreasing the water activity of the medium by adding either dimethyl sulfoxide (50%, v/v) or polyethylene glycol 6,000-8,000 (50%, w/v). The Kobs for phosphoesters such as phosphoserine, glucose phosphate, glycerol phosphate, and ethylene glycol phosphate varied little over this wide range of conditions, the extreme values of Kobs being 12 and 200 M. In contrast, the Kobs for the phosphoanhydride bond of pyrophosphate varied from a value greater than 20,000 to 0.1 M. In totally aqueous media at a pH between 7.0 and 8.0 and in the presence of 0.5-1.0 mM MgCl2, the energy of hydrolysis of pyrophosphate was 1.2-4.0 kcal/mol greater than that of phosphoserine. However, when the water activity was decreased by adding polyethylene glycol to the medium within the same pH and MgCl2 concentration range, the energy of hydrolysis of phosphoserine became 2.0-2.5 kcal/mol greater than that of pyrophosphate. The results suggest that for phosphoesters, the solvation energies of reactants and products, unlike the case of phosphoanhydride bonds, are not the major factors in determining the energy of hydrolysis.  相似文献   

8.
Rat liver microsomes show a capacity to synthesize [1-3H]dolichyl phosphate from [1-3H]-dolichol. Formation of [1-3H]dolichyl phosphate increased continuously over 15 min although the reaction rate was never completely linear. Product formation was directly proportional to microsomal protein concentration between 1.1 mg/mL and the highest concentration tested, 5.5 mg/mL. The reaction rate was linear with respect to the dolichol content of the assay mixture to a saturation point (120 microM). An apparent Km of 50 microM was established for dolichol. The normal phosphate donor for the reaction is CTP and not ATP. The optimum concentration of CTP was 10 mM, and an apparent Km of 4 mM was calculated for this nucleoside triphosphate. The reaction was totally dependent on divalent metal ion, magnesium being more effective than calcium. The optimum concentration of magnesium ion and CTP were the same (10 mM), suggesting that MgCTP2- is utilized as the normal enzyme substrate. Activity measured in the absence of Triton X-100 was only 5% of the activity observed at the optimum (0.5% w/v) detergent concentration. The measurable levels of dolichol phosphokinase could be doubled by the inclusion of 10-15 mM NaF as phosphatase inhibitor. Optimal enzymatic activity was obtained between pH 7.0 and pH 7.5 and could be inhibited by EDTA. The sulfhydryl reagent DTT was slightly stimulatory while the product of the reaction, dolichyl phosphate, was noninhibitory at the highest concentration tested (13.8 microM). The second reaction product (CDP) inhibits the enzymatic phosphorylation of dolichol.  相似文献   

9.
When Mycobacterium smegmatis TMC1546 was grown at different concentrations of glucose supplemented to a synthetic medium already containing 2% v/v glycerol, the following changes were observed. Amount of calmodulin-like protein (CAMLP), total and individual phospholipids (PLs) namely phosphatidylethanolamine, cardiolipin, phosphatidylglycerol and phosphatidylinositol mannosides and total lipids and growth increased up to 5% w/v but decreased at higher concentrations of glucose (7.5% w/v and above). Cyclic AMP content of the whole cells decreased continuously with increase in glucose concentration in the medium. Incorporation of 32Pi into total phospholipids was inhibited by two calmodulin antagonists trifluoperazine and phenothiazine (50% at 40 microM) and the calcium-specific chelator ethylene glycol bis (beta-aminoethyl ether) N,N,N',N'-tetraacetate (EGTA) 35% at 2 mM. Total lipids, CAMLP and growth of this organism are also modulated in a similar way in response to the glucose concentration in the growth medium. Taking these observations together it is suggested that CAMLP has some effect on the metabolism of PLs.  相似文献   

10.
The enantioselectivity of the enzymes responsible for reduction of prochiral compound 3-phenylthiopropan-2-one was dependent on the concentration of yeast extract and glucose in the growth medium. Low concentrations of yeast extract (0.1-0.9% w/v) favored the formation of S-enantiomer (62% ee at 0.1% w/v yeast extract) of 3-phenylthiopropan-2-ol. However, R-enantiomer of the reduced product was formed when MSM was supplemented with yeast extract at a concentration of 1% (w/v) or more with a maximum ee of 85% at 2.0% (w/v) yeast extract supplement in the growth medium.  相似文献   

11.
Nowadays, the dairy industry is continuously looking for new and more efficient clotting enzymes to create innovative products. Cyprosin B is a plant aspartic protease characterized by clotting activity that was previously cloned in Saccharomyces cerevisiae BJ1991 strain. The production of recombinant cyprosin B by a batch and fed-batch culture was compared using glucose and galactose as carbon sources. The strategy for fed-batch cultivation involved two steps: in the first batch phase, the culture medium presented glucose 1 % (w/v) and galactose 0.5 % (w/v), while in the feed step the culture medium was constituted by 5 % (w/v) galactose with the aim to minimize the GAL7 promoter repression. Based on fed-batch, in comparison to batch growth, an increase in biomass (6.6-fold), protein concentration (59 %) and cyprosin B activity (91 %) was achieved. The recombinant cyprosin B was purified by a single hydrophobic chromatography, presenting a specific activity of 6 × 104 U·mg?1, corresponding to a purification degree of 12.5-fold and a recovery yield of 16.4 %. The SDS-PAGE analysis showed that recovery procedure is suitable for achieving the purified recombinant cyprosin B. The results show that the recombinant cyprosin B production can be improved based on two distinct steps during the fed-batch, presenting that this strategy, associated with a simplified purification procedure, could be applied to large-scale production, constituting a new and efficient alternative for animal and fungal enzymes widely used in cheese making.  相似文献   

12.
SYNOPSIS. In chemically defined media at carbohydrate concentrations ≧ 0.5% (w/v) Tetrahymena pyriformis W multiplied more rapidly, developed larger cells, and achieved greater growth as measured by optical density when carbohydrate was provided as dextrin rather than glucose. In media containing 0.3 mg/ml of amino acid nitrogen, growth increased with glucose concentration from 0.1 to 1%, did not change significantly to 3%, and was sharply inhibited at higher glucose levels. With dextrin, maximum growth paralleled carbohydrate concentration from 0.1 to 3%. At higher N levels the inhibitory concentration of glucose was lowered, but growth in dextrin media was not affected except at N concentrations that were inhibitory independent of carbohydrate source. At 1% carbohydrate levels, total cell protein per ml of culture was 60% greater, protein per cell approximately 50% greater, and cells were 1.5 to 2 times larger in media with dextrin than with glucose. Comparable differences in protein synthesis were observed at 2% carbohydrate levels and efficiency of conversion of substrate-N to protein-N was greater in the medium with dextrin than glucose.
Growth as measured by optical density in media with 0.3 mg/ml of N and 1 or 2% (w/v) of dextrin was not significantly reduced by the simultaneous presence of 1 or 2% glucose. This observation appeared to negate osmotic pressure as an explanation of reduced growth in the presence of glucose. At higher osmolar concentrations osmotic pressure appeared to be a major determinant of overall growth but not of cell size.  相似文献   

13.
A reconstituted glycolytic system has been established from individually purified enzymes to simulate the conversion of glucose to ethanol plus CO2 by yeast. Sustained and extensive conversion occurred provided that input of glucose matched the rate of ATP degradation appropriately.ATPase activity could be replaced by arsenate, which uncoupled ATP synthesis from glycolysis. The mode of uncoupling was investigated, and it was concluded that the artificial intermediate, 1-arseno-3-phosphoglycerate, has a half-life of no more than a few milliseconds. Arsenate at 4 mM concentration could simulate the equivalent of 10 μmol ml?1 min?1 of ATPase activity.The reconstituted enzyme system was capable of totally degrading 1 M (18% w/v) glucose in 8 h giving 9% (w/v) ethanol. The levels of metabolites during metabolism were measured to detect rate-limiting steps.The successful operation of the reconstituted enzyme system demonstrates that it is possible to carry out complex chemical transformations with multiple enzyme systems in vitro.  相似文献   

14.
Abstract Although Bacillus fastidiosus assimilates ammonium formed internally during growth on urate, allantoin or allantoate via NADP-dependent glutamate dehydrogenase (NADP-GDH), growth on exogenous ammonium as nitrogen source has not been observed. Growth on ammonium, urea and ureidoglycolate, intermediates of the urate degradative pathway, was found to occur if the mineral growth medium containing glycerol as a carbon source was supplemented with both allantoin (0.5 mM) and brain heart infusion (BHI, 0.1%, w/v) or yeast extract. Neither allantoin nor BHI supported growth alone or in combination unless ammonium was present. NADP-GDH activity appeared to be regulated only by the extracellular concentration of allantoin or allantoate. Enzyme activity was not influenced by other nitrogen sources or the intracellular ammonium concentration.  相似文献   

15.
Alcaligenes xylosoxidans subsp. xylosoxidans (SH91) capable of biodegradation of thiodiglycol (TDG) were immobilized in poly(vinyl) alcohol (PVA) cryogels. Cryoimmobilized biocatalyst was formed as spherical granules with a diameter of 0.5 mm; the biomass concentration inside the gel matrix was as high as 10% (w/w). The immobilized cells were capable of rapid degradation of TDG in tap water or potassium phosphate buffer (100 mM, pH 8.0) containing only (NH4)2 SO4. The immobilized biocatalyst did not show any substrate inhibition up to 200 mM TDG, and retained 100% activity during three months of continuous use in a repeated-batch bioreactor.  相似文献   

16.
Cells of Azotobacter chroococcum MAL-201 (MTCC 3853) are capable of accumulating the intracellular poly(3-hydroxybutyric acid) [P(3HB)], accounting for 65–71 % of its cell dry weight and also capable of synthesizing the enzyme alkaline phosphatase (APase), when grown in glucose and tricalcium phosphate containing nitrogen-free modified Stockdale medium. The concentration of insoluble phosphate in broth medium was optimized as 0.25 % (w/v) for growth and biosynthesis of APase. However, the suboptimal concentration of phosphate (0.1 %, w/v) appeared as the best suited for accumulation of P(3HB) by the strain. The significant differences were observed in biosynthesis of polymer and APase enzyme under variable phosphate concentrations. Glucose, 3.0 % (w/v) was recorded as the optimum concentration for all of the three parameters. The continuation of APase biosynthesis was observed during the period of significant decline in the cellular content of the polymer in the late phase of growth. In order to study the role of P(3HB), the rate of autodigestion of biopolymer and phosphate solubilization rate (k, mineralization constant) were determined in carbon-free medium under batch cultivation process and the parameters were found to be positively correlated. The maximum phosphate solubilization rate (k = 0.0154) by the strain MAL-201 timed at the 10th hour of incubation when the rate of polymer degradation concomitantly attained its peak corresponding to 87 mg/l/h and then declined gradually. Only a negligible amount of residual polymer remained undigested. These data strongly support the functional role of P(3HB) in response to multinutritional stress condition.  相似文献   

17.
18.
The glyoxylate cycle comprising isocitrate lyase (ICL) and malate synthase (MS) is an anaplerotic pathway essential for growth on acetate as the sole carbon source. The aceB gene, which encodes malate synthase has been previously cloned from Streptomyces clavuligerus NRRL 3585 and characterized. In this study, the aceA gene, encoding ICL from S. clavuligerus NRRL 3585, was obtained via genome walking experiments and PCR. The fully sequenced open reading frame encodes 436 amino acids with a deduced M(r) of 47.5 kDa, consistent with the observed M(r) (49-67.5 kDa) of most ICL enzymes reported so far. The cloned aceA gene was expressed in Escherichia coli BL21(lambdaDE3) cells, from which ICL was purified as a His-tagged product and its functionality demonstrated. Furthermore, the relationship between the carbon sources, growth and ICL activity in S. clavuligerus were investigated. Rapid growth was observed when the cells were cultured on 0.5% (w/v) glycerol, while delayed growth was observed when cells were grown on 0.5% (w/v) acetate. However, in both cases, high levels of ICL activity coincided with a cessation of growth, suggesting a late physiological role played by ICL in the natural host, S. clavuligerus.  相似文献   

19.
1. Measurements were made of the activities of the enzymes of the pentose phosphate pathway concerned in both the oxidative (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and the non-oxidative (ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) reactions of this pathway, together with hexokinase and phosphoglucose isomerase, in adipose tissue in a variety of nutritional and hormonal conditions. 2. Starvation for 2 days caused a significant decrease in the activities of all the enzymes of the pentose phosphate pathway, with the exception of glucose 6-phosphate dehydrogenase, when expressed as activity/2 fat-pads; only the activities of ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase were significantly decreased on the basis of activity/mg. of protein. Re-feeding with a high-carbohydrate or high-fat diet for 3 days restored the activity of all the enzymes of the pentose phosphate pathway to the range of the control values, with the exception of transketolase, which showed a marked ;overshoot' in rats re-fed with carbohydrate. Starvation for 3 days caused a marked decrease in the activities of glucose 6-phosphate dehydrogenase and transketolase. 3. On the basis of activity/two fat-pads, alloxan-diabetes caused a marked decrease, to about half the control value, in the activities of all the enzymes concerned in the pentose phosphate pathway, transketolase showing the smallest decrease; hexokinase and phosphoglucose isomerase activities were also decreased. Treatment with insulin for 3 and 7 days raised the activities to normal or supranormal values, transketolase showing the most marked ;overshoot' effect. On the basis of activity/mg. of protein the activity of none of the enzymes was significantly decreased in alloxan-diabetes; transketolase and transaldolase activities were raised above the control values. With insulin treatment for 3 or 7 days the activities of all the enzymes were significantly increased, except that of ribulose 5-phosphate epimerase at the shorter time-interval. Glucagon treatment did not alter any of the enzyme activities expressed on either basis. 4. Thyroidectomy caused a decrease of 30-40% in the activities of enzymes of the pentose phosphate pathway, except for transketolase activity, which fell to 50% of the control value. Little change occurred in adipose-tissue weight or protein content. 5. Adrenalectomy caused a decrease of 40% in the activity of glucose 6-phosphate dehydrogenase and of 20-30% in the activities of the remaining enzymes of the pentose phosphate pathway; hexokinase activity was also decreased. Treatment with cortisone for 3 days did not significantly raise the activity from that found in adrenalectomized rats. Treatment of normal rats with high doses of cortisone had no significant effect on the activities of the enzymes of the pentose phosphate pathway in adipose tissue. 6. The changes in enzyme activities are discussed in relation to: (a) the concept of constant-proportion groups of enzymes; (b) the known changes in the flux of glucose through alternative metabolic pathways; (c) the pattern of change found in liver with similar hormonal and dietary conditions.  相似文献   

20.
Conditions are described for the preparation of permeabilized cells of Candida albicans. This method has been used for the in situ assay of enzymes in both yeast cells and germ-tube forming cells. A mixture of toluene/ethanol/Triton X-100 (1:4:0.2, by vol.) at 15% (v/v) and 8% (v/v) was optimal for the in situ assay of glucose-6-phosphate dehydrogenase in yeast and germ-tube forming cells, respectively. The concentration of toluene/ethanol/Triton X-100 required for optimal in situ activity of other enzymes was influenced by the cellular location of the enzyme, growth phase and morphology. The membrane-bound enzymes (chitin synthase, glucan synthase, ATPase), cytosolic enzymes (glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, pyruvate kinase, phosphofructokinase, alkaline phosphatase, glucosamine-6-phosphate deaminase and N-acetylglucosamine kinase) and wall enzymes (beta-glucosidase and acid phosphatase) were measured and compared to the activity obtained in cell extracts. The pattern of enzyme induction and the properties of the allosteric enzymes phosphofructokinase and pyruvate kinase were measured in situ. Pyruvate kinase in situ was homotropic for phosphoenolpyruvate with a Hill coefficient of 1.9 and a S0.5 of 0.6 mM, whereas in cell extracts, it had a Hill coefficient of 1.9 and a S0.5 of 1.0 mM. The Km for ATP was 1.6 mM in cell extracts and 1.8 mM in permeabilized cells. In situ phosphofructokinase was homotropic for fructose 6-phosphate (S0.5 of 2.3 mM, Hill coefficient of 4.0). The kinetic properties of pyruvate kinase and phosphofructokinase measured in situ or in vitro were similar for both yeast cells and germ-tube forming cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号