首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Waterloh  R K Olsen  K R Fox 《Biochemistry》1992,31(27):6246-6253
The binding of [N-MeCys3,N-MeCys7]TANDEM has been examined by DNase I footprinting and diethyl pyrocarbonate modification of several synthetic DNA fragments containing AT-rich regions. DNase I footprinting reveals that at low concentrations the ligand binds preferentially to the center of (AT)n regions. A fragment containing the tetranucleotide AATT was unaffected by the ligand. Diethyl pyrocarbonate modification of several fragments containing blocks of (AT)n revealed a pattern in which alternate adenines were rendered more reactive in the presence of the ligand. These reactive adenines were staggered across the two DNA strands in the 3'-direction, consistent with ligand binding to the dinucleotide TpA. In sequences of the type (TAA)n.(TTA)n, binding of [N-MeCys3,N-MeCys7]TANDEM resulted in strong modification of the second adenine in the sequence TAA, i.e., the base on the 3'-side of the ligand binding site. Data for binding to (AT)n are best explained by suggesting that the adenines sandwiched between the quinoxaline chromophores are rendered most reactive to diethyl pyrocarbonate.  相似文献   

2.
Considering the recent challenge to the medicinal chemists for the development of selective melatonin receptor ligands, an attempt has been made to explore physicochemical requirements of benzofuran derivatives for binding with human MT1 and MT2 receptor subtypes and also to explore selectivity requirements. In this study, E-states of different common atoms of the molecules (calculated according to Kier and Hall) and physicochemical parameters (partition coefficient and molar refractivity) were used as independent variables along with suitable dummy parameters. The best equation describing MT1 binding affinity [n = 34, Q2 = 0.670, Ra2 = 0.790, R2 = 0.822, R = 0.907, s = 0.609, F = 25.8 (df 5, 28)] suggests that the binding affinity decreases as the value of n (number of CH2 spacer beside R2) increases while it increases with rise in electrotopological state values of different atoms of the benzofuran ring. Again, presence of methoxy group at R1 and hydrogen, unsubstituted phenyl or fluoro-substituted phenyl group at R2 is conducive to the MT1 binding affinity. The binding affinity decreases if furyl substitution at R3 position is present. The best equation describing MT2 binding affinity [n = 34, Q2 = 0.602, Ra2 = 0.755, R2 = 0.792, R = 0.890, s = 0.584, F = 213 (df 5, 28)] shows that the MT2 binding affinity depends on the similar factors as described for MT1 binding affinity; however, the contributions of the factors for the two affinities are different to some extent as evidenced from the regression coefficients. Among the selectivity relations, the best equation [n = 33, Q2 = 0.496 Ra2 = 0.681, R2 = 0.721, R = 0.849, s = 0.458, F = 18.1(df 4, 28)] suggests that MT2 binding increases with increase in value of n, presence of methoxy group at R1, and E-state values of different atoms of the benzofuran ring, while it decreases in presence of furyl group at R3 position.  相似文献   

3.
We have studied the DNA sequence binding preference of the antitumour antibiotic nogalamycin by DNase-I footprinting using a variety of DNA fragments. The DNA fragments were obtained by cloning synthetic oligonucleotides into longer DNA fragments and were designed to contain isolated ligand-binding sites surrounded by repetitive sequences such as (A)n.(T)n and (AT)n. Within regions of (A)n.(T)n, clear footprints are observed with low concentrations of nogalamycin (< 5 microM), with apparent binding affinities for tetranucleotide sequences which decrease in the order TGCA > AGCT = ACGT > TCGA. In contrast, within regions of (AT)n, the ligand binds best to AGCT; binding to TCGA and TGCA is no stronger than to alternating AT. Within (ATT)n, the preference is for ACGT > TCGA. Although each of these binding sites contains all four base pairs, there is no apparent consensus sequence, suggesting that the selectivity is affected by local DNA dynamic and structural effects. At higher drug concentrations (> 25 microM), nogalamycin prevents DNAse-I cleavage of (AT)n but shows no interaction with regions of (AC)n.(GT)n. Regions of (A)n.(T)n, which are poorly cut by DNase I, show enhanced rates of cleavage in the presence of low concentrations of nogalamycin, but are protected from cleavage at higher concentrations. We suggest that this arises because drug binding to adjacent regions distorts the DNA to a structure which is more readily cut by the enzyme and which is better able to bind further ligand molecules.  相似文献   

4.
Using the copper(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition, a post-elongation modification of 1-ethynyl substituted nucleobases has been employed to construct 18 variations of oligonucleotides from a common oligonucleotide precursor. The triplex-forming ability of each oligonucleotide with dsDNA was evaluated by the UV melting experiment. It was found that triazole nucleobases generally tend to exhibit binding affinities in the following order: CG>TA>AT, GC base pairs. Among the triazole nucleobases examined, a 1-(4-ureidophenyl)triazole provided the best result with regard to affinity and selectivity for the CG base pair.  相似文献   

5.
The phenanthridinium dye ethidium bromide is a prototypical DNA intercalating agent. For decades, this anti-trypanosomal agent has been known to intercalate into nucleic acids, with little preference for particular sequences. Only polydA-polydT tracts are relatively refractory to ethidium intercalation. In an effort to tune the sequence selectivity of known DNA binding agents, we report here the synthesis and detailed characterization of the mode of binding to DNA of a novel ethidium derivative possessing two guanidinium groups at positions 3 and 8. This compound, DB950, binds to DNA much more tightly than ethidium and exhibits distinct DNA-dependent absorption and fluorescence properties. The study of the mode of binding to DNA by means of circular and electric linear dichroism revealed that, unlike ethidium, DB950 forms minor groove complexes with AT sequences. Accurate quantification of binding affinities by surface plasmon resonance using A(n)T(n) hairpin oligomer indicated that the interaction of DB950 is over 10-50 times stronger than that of ethidium and comparable to that of the known minor groove binder furamidine. DB950 interacts weakly with GC sites by intercalation. DNase I footprinting experiments performed with different DNA fragments established that DB950 presents a pronounced selectivity for AT-rich sites, identical with that of furamidine. The replacement of the amino groups of ethidium with guanidinium groups has resulted in a marked gain of both affinity and sequence selectivity. DB950 provides protection against DNase I cleavage at AT-containing sites which frequently correspond to regions of enhanced cleavage in the presence of ethidium. Although DB950 maintains a planar phenanthridinium chromophore, the compound no longer intercalates at AT sites. The guanidinium groups of DB950, just like the amidinium group of furamidine (DB75), are the critical determinants for recognition of AT binding sites in DNA. The chemical modulation of the ethidium exocyclic amines is a profitable option to tune the nucleic acid recognition properties of phenylphenanthridinium dyes.  相似文献   

6.
The DNA binding selectivity of three ligands of a series of antitumor agents of bisquaternary ammonium heterocycles has been investigated by means of CD spectroscopy and melting measurements. From the spectroscopic results and binding data it is concluded that the agents SN-6132, SN-6131 and SN-6113 have relatively high affinity to AT base pair sequences whereas the binding to GC pairs is very low. The binding selectivity to AT base pair sequences decreases in the order netropsin > SN-6132 > SN-6113 > SN-6131. Poly(dA).poly(dT) has the highest binding preference for SN-6132 relative to that of SN-6131. The different binding behavior of the ligands is related to their distinct changes in the chemical structure and to the DNA minor groove properties which determines the adaptability of the ligands in the groove.  相似文献   

7.
Considering potential of selective adenosine A3 receptor antagonists in the development of prospective therapeutic agents, an attempt has been made to explore selectivity requirements of 1,2,4-triazolo[5,1-i]purine derivatives for binding with cloned human adenosine A3 receptor subtype. In this study, partition coefficient (logP) values of the molecules (calculated by Crippen's fragmentation method) and Wang-Ford charges of the common atoms of the triazolopurine nucleus (calculated from molecular electrostatic potential surface of energy minimized geometry using AM1 technique) were used as independent variables along with suitable dummy parameters. The best equation describing A3 binding affinity [n=29, Q2=0.796, Ra2=0.853, R2=0.874, R=0.935, s=0.342, F=41.5 (df 4,24), SDEP=0.396] showed parabolic relation with logP (optimum value being 4.134). Further, it was found that an aromatic substituent conjugated with the triazole nucleus should be present at R2 position for A3 binding affinity. Again, high negative charges on N2 and N4 are conducive to the binding affinity. While exploring selectivity requirements of the compounds for binding with A3 receptor over that with A2A receptor, the selectivity relation [n=23, Q2=0.909, Ra2=0.918, R2=0.933, R=0.966, s=0.401, F=62.4 (df 4,18), SDEP=0.412] showed that an aromatic R2 substituent conjugated with the triazole nucleus contributes significantly to the selectivity. Again, presence of a 4-substituted-phenyl ring (except 4-OH-phenyl and 4-CH3-phenyl) at R2 position also increases selectivity. Further, charge difference between N2 and N11 (negative charge on the former should be higher and that on the latter should be less) contributes significantly to the selectivity. In addition, negative charge on N7 is conducive while presence of substituents like propyl, butyl, pentyl or phenyl at R1 position is detrimental for the A3 selectivity.  相似文献   

8.
Two series of delta-selective ligands related to the prototypic delta-antagonist naltrindole have been prepared and evaluated in opioid binding assays with the aim of developing new PET ligands for the delta-opioid receptor. One compound (5d) had significantly higher selectivity than naltrindole, but with substantially reduced binding affinity. For those compounds retaining similar affinity to naltrindole, those having ethyl and fluoroethyl substituents afforded the highest levels of selectivity. However, none of the compounds combined the high level of affinity and selectivity ideally suited to the development of an imaging agent.  相似文献   

9.
The sequence selectivity associated with binding to DNA of three alkaloids belonging to the benzophenanthridine family has been analysed by DNase I footprinting, and the results were compared with those obtained from an analysis of the behaviour of the standard intercalator, ethidium bromide. Like the ethidium, the benzophenanthridine compounds appear to bind best to regions of mixed nucleotide sequence, especially those containing alternating purines and pyrimidines, although there are some notable differences in behaviour. There is also a marked lack of binding to sequences such as (AT)n, where n greater than or equal to 3. The binding to DNA of the benzophenanthridines is specifically related to the hydrogen ion concentration of the medium, in that the DNase I footprints are considerably enhanced when the reaction is performed at a pH below 7.0. We discuss these results in terms of a greater preponderance of the intercalating species being present at lower pH.  相似文献   

10.
Protease inhibitors are key components in the chemotherapy of HIV-1 infection. However, the long term efficacy of antiretroviral therapies is hampered by issues of patient compliance often associated with the presence of severe side effects, and above all by the appearance of drug resistance. The development of new protease inhibitors with high potency, low susceptibility to mutations and minimal affinity for unwanted targets is an urgent goal. The engineering of these adaptive inhibitors requires identification of the critical determinants of affinity, adaptability, and selectivity. Analysis of the binding database for existing clinical and experimental inhibitors has allowed us to address the following questions in a quantitative fashion: (1) Is there an optimal binding affinity? Or, are the highest affinity inhibitors necessarily the best inhibitors? (2) What is the dependence of optimal affinity on adaptability and selectivity? (3) What are the determinants of adaptability to mutations associated with drug resistance? (4) How selectivity against unwanted targets can be improved? It is shown that the optimal affinity is a function of the effective target concentration and the desired adaptability and selectivity factors. Furthermore, knowledge of the enthalpic and entropic contributions to the binding affinity to the wild type provides a way of anticipating the response of an inhibitor to mutations associated with drug resistance, and therefore, a valuable guideline for optimization.  相似文献   

11.
Protein titration displacement of ethidium bromide bound to hairpin deoxyoligonucleotides containing any sequence of interest provides a well-defined titration curve (measuring the loss of fluorescence derived from the DNA bound ethidium bromide) that provides both absolute binding constants (K(a)) and stoichiometry of binding. This use of a fluorescent intercalator displacement (FID) assay for establishing protein DNA binding affinity and selectivity is demonstrated with the examination of the LEF-1 HMG domain binding to hairpin deoxyoligonucleotides containing its commonly accepted consensus sequence 5'-CTTTGWW (W=A or T) and those modified (5'-CTNTGWW) to examine sequences implicated in early studies (5'-CTNTG). The effectiveness of the FID assay coupled with its technically non-demanding experimental use makes it an attractive alternative or complement to selection screening, footprinting or affinity cleavage, and electrophoretic mobility shift assays for detecting, characterizing, and quantitating protein DNA binding affinity and selectivity.  相似文献   

12.
In the course of a program aimed at developing sequence-specific gene-regulatory small organic molecules, we have investigated the DNA interactions of a new series of nine diphenylfuran dications related to the antiparasitic drug furamidine (DB75). Two types of structural modifications were tested: the terminal amidine groups of DB75 were shifted from the para to the meta position, and the amidines were replaced with imidazoline or dimethyl-imidazoline groups, to test the importance of both the position and nature of positively charged groups on DNA interactions. The interactions of these compounds with DNA and oligonucleotides were studied by a combination of biochemical and biophysical techniques. Absorption and CD measurements suggested that the drugs bind differently to AT and GC sequences in DNA. The para-para dications, like DB75, bind into the minor groove of poly(dAT)(2) and intercalate between the base pairs of poly(dGC)(2), as revealed by electric linear dichroism experiments. In contrast, the meta-meta compounds exhibit a high tendency to intercalate into DNA whatever the target sequence. The lack of sequence selectivity of the meta-meta compounds containing amidines or dimethyl-imidazoline groups was also evident from DNase I footprinting and surface plasmon resonance (SPR) experiments. Accurate binding measurements using the BIAcore SPR method revealed that all nine compounds bind with similar affinity to an immobilized GC sequence DNA hairpin but exhibit very distinct affinities for the corresponding AT hairpin oligonucleotide. The minor groove-binding para-para compounds have a high specificity for AT sequences. The biophysical data clearly indicate that shifting the cationic substituents from the para to the meta position results in a loss of specificity and change in binding mode. The strong AT selectivity of the para-para compounds was independently confirmed by DNase I footprinting experiments performed with a range of DNA restrictions fragments. In terms of AT selectivity, the compounds rank in the order para-para > para-meta > meta-meta. The para dications bind preferentially to sequences containing four contiguous AT base pairs. Additional footprinting experiments with substrates containing the 16 possible [A.T](4) blocks indicated that the presence of a TpA step within an [A.T] (4) block generally reduces the extent of binding. The diverse methods, from footprinting to SPR to dichroism, provide a consistent model for the interactions of the diphenylfuran dications with DNA of different sequences. Altogether, the results attest unequivocally that the binding mode for unfused aromatic cations can change completely depending on substituent position and DNA sequence. These data provide a rationale to explain the relationships between sequence selectivity and mode of binding to DNA for unfused aromatic dications related to furamidine.  相似文献   

13.
Non-covalent DNA-binding has been studied of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (Me-IQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (Me-IQx), strong mutagens found in broiled foods. These mutagens are intercalated into DNA, as found by ultraviolet absorption gel electrophoresis. The binding of IQ is stronger with GC pairs than AT pairs in DNA. The binding constants with calf thymus DNA are 1.6 × 106 (Me-IQ), 0.9 × 106 (IQ) and 0.7 × 106 M−1 (Me-IQx) at pH 6.0. This order of DNA affinity agrees with the order of mutagenicity towards Salmonella typhimurium TA98.  相似文献   

14.
In an effort to produce new pharmacological probes with mixed sigma/5-HT(1A) affinity, we have synthesized a series of 12 original 6-piperidino- or piperazino-alkyl-2(3H)-benzothiazolones and their receptor binding profile (sigma, 5-HT(1A), 5-HT(2A), 5-HT(3), D(2), H(1), and M(1)) was determined. The best mixed sigma/5-HT(1A) affinity profile was found within the piperidine series with 4-benzyl substitution associated to linker methylene chain n=2 (K(i) 5 and 4nM, respectively). Moreover, a highly selective sigma2 ligand was obtained with a 3,4-dichlorobenzyl substitution associated to n=4 (K(i) 2nM, selectivity ratio sigma1/sigma2=70).  相似文献   

15.
Considering the potential of selective adenosine A3 receptor subtype ligands in the development of prospective therapeutic agents, an attempt has been made to explore physicochemical requirements of 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives for A3 receptor binding. In this study, lipophilicity (logP), physicochemical substituent constants (pi, MR, sigma p) of phenyl ring substituents, and Wang-Ford charges of common atoms of the quinoxaline nucleus (calculated from molecular electrostatic potential surface of energy-minimized geometry using AM1 technique) were used as independent variables along with suitable dummy parameters. The best multiple linear regression (MLR) equation obtained from factor analysis (FA-MLR) as the preprocessing step could explain and predict 72.6% and 65.3%, respectively, of the variance of the binding affinity. The same equation also emerged as the best equation in the population of 100 equations obtained from genetic function approximation (GFA-MLR). The results suggested that presence of an electron-withdrawing group at the para position of the phenyl ring would be favorable for the binding affinity. Again, the presence of a nitro group at position R1 increases the binding affinity. When factor scores were used as predictor variables in the principal component regression analysis, the resultant model showed 78.6% explained variance and 63.1% predicted variance. The best equation derived from G/PLS could explain and predict 74.4% and 64.8%, respectively. The results have suggested the importance of Wang-Ford charges of atoms C15 and C19, apart from positive contributions of electron-withdrawing para substituents of the variance of the phenyl ring and nitro group at the R1 position.  相似文献   

16.
Qu X  Ren J  Riccelli PV  Benight AS  Chaires JB 《Biochemistry》2003,42(41):11960-11967
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms. Our results reveal a pronounced enthalpy-entropy compensation for 7-amino actinomycin D binding to this family of oligonucleotides and suggest that the DNA sequences flanking the primary binding site can strongly influence ligand recognition of specific sites on target DNA molecules.  相似文献   

17.
We have prepared novel DNA footprinting substrates that contain all 64 symmetrical hexanucleotide sequences. These were contained in two restriction fragments that were cloned into the pUC19 polylinker site; each fragment was also obtained in both orientations. These fragments were used to assess the sequence binding preferences of the synthetic quinoxaline antibiotic TANDEM. We found that, although the ligand binds to most TpA steps, the affinity is affected by the flanking sequences. The best binding sites contain the tetranucleotide sequence ATAT, although YATATR is a better site than RATATY. TTAA always is a poor binding site, especially TTTAAA. The binding to GTAC is strongly dependent on the flanking bases, with good binding to GGTACC but none at all to CGTACG.  相似文献   

18.
Speth RC 《Regulatory peptides》2003,115(3):203-209
Studies predating the discovery of the two major subtypes of angiotensin II (Ang II) receptors, AT1 and AT2, revealed anomalous characteristics of sarcosine1,glycine8 Ang II (Sar1,Gly8 Ang II). It competed poorly for 125I-Ang II binding in bovine brain but potently antagonized dipsogenic responses to intracerebroventricularly administered Ang II. Subsequent recognition that bovine brain contains AT(2) receptors, while dipsogenic responses to Ang II are mediated by AT1 receptors, suggests that Sar1,Gly(8) Ang II is AT1 selective. Sar1,Gly8 Ang II competed for 125I-sarcosine1,isoleucine8 Ang II binding to AT1 receptors in pituitary, liver and adrenal (the latter with the AT2 selective antagonist PD 123,319) with Ki's of 0.66, 1.40 and 1.36 nM, respectively. In contrast, the Ki of Sar1,Gly8 Ang II for AT2 receptors in rat adrenal (with the selective AT1 antagonist losartan) was 52 nM. 125I-Sar1,Gly8 Ang II (0.5-3 nM) bound to AT1 receptors in pituitary, liver, heart, adrenal, and hypothalamic membranes with high affinity (Kd=0.43, 1.6, 2.3, 0.96 and 1.8 nM, respectively), but showed no saturable binding to the adrenal AT2 receptor. 125I-Sar1,Gly8 Ang II selectively labeled AT1 receptors in sections of adrenal using receptor autoradiography. Thus, binding studies reveal Sar1,Gly8 Ang II to be the first angiotensin peptide analog to show AT1 receptor selectivity. 125I-Sar1,Gly8 Ang II offers a new means to selectively radiolabel AT1 receptors and may help to characterize ligand docking sites and agonist switches for AT1 versus AT2 receptors.  相似文献   

19.
Triple helix formation at (AT)n adjacent to an oligopurine tract.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used DNase I footprinting to investigate the recognition of (AT) n tracts in duplex DNA using GT-containing oligonucleotides designed to form alternating G.TA and T.AT triplets. Previous studies have shown that the formation of these complexes is facilitated by anchoring the triplex with a block of adjacent T.AT triplets, i.e. using T11(TG)6to recognize the target A11(AT)6. (AT)6T11. In the present study we have examined how the stability of these complexes is affected by the length of either the T.AT tract or the region of alternating G.TA and T.AT triplets, using oligonucleotides of type T x (TG) y to recognize the sequence A11(AT)11. We find that successful triplex formation at (AT)n (n = 3, 6 or 11) can be achieved with a stabilizing tail of 11xT.AT triplets. The affinity of the third strand increases with the length of the (GT) n tract, suggesting that the alternating G.TA and T.AT triplets are making a positive contribution to stability. These complexes are stabilized by the presence of manganese or a triplex-specific binding ligand. Shorter oligo-nucleotides, such as T7(TG)5, bind less tightly and require the addition of a triplex-binding ligand. T4(GT)5showed no binding under any conditions. Oligo-nucleotides forming a 3'-terminal T.AT are marginally more stable that those with a terminal G.TA. The stability of these complexes was further increased by replacing two of the T.AT triplets in the T n tail region with two C+.GC triplets.  相似文献   

20.
The present study investigates the importance of the amino acid side chains in the octapeptide angiotensin II (Ang II) for binding to the AT2 receptor. A Gly scan was performed where each amino acid in Ang II was substituted one-by-one with glycine. The resulting set of peptides was tested for affinity to the AT2 receptor (porcine myometrial membranes). For a comparison, the peptides were also tested for affinity to the AT1 receptor (rat liver membranes). Only the substitution of Arg2 reduced affinity to the AT2 receptor considerably (92-fold when compared with Ang II). For the other Gly-substituted analogues the affinity to the AT2 receptor was only moderately affected. To further investigate the role of the Arg2 side chain for receptor binding, we synthesized some N-terminally modified Ang II analogues. According to these studies a positive charge in the N-terminal end of angiotensin III [Ang II (2-8)] is not required for high AT2 receptor affinity but seems to be more important in Ang II. With respect to the AT1 receptor, [Gly2]Ang II and [Gly8]Ang II lacked binding affinity (Ki > 10 microM). Replacement of the Val3 or Ile5 residues with Gly produced only a slight decrease in affinity. Interestingly, substitution of Tyr4 or His6, which are known to be very important for AT1 receptor binding, resulted in only 48 and 14 times reduction in affinity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号