共查询到20条相似文献,搜索用时 0 毫秒
1.
Krauss M Jia JY Roux A Beck R Wieland FT De Camilli P Haucke V 《The Journal of biological chemistry》2008,283(41):27717-27723
ADP-ribosylation factor (Arf) and related small GTPases play crucial roles in membrane traffic within the exo- and endocytic pathways. Arf proteins in their GTP-bound state are associated with curved membrane buds and tubules, frequently together with effector coat proteins to which they bind. Here we report that Arf1 is found on membrane tubules originating from the Golgi complex where it colocalizes with COPI and GGA1 vesicle coat proteins. Arf1 also induces tubulation of liposomes in vitro. Mutations within the amino-terminal amphipathic helix (NTH) of Arf1 affect the number of Arf1-positive tubules in vivo and its property to tubulate liposomes. Moreover, hydrophilic substitutions within the hydrophobic part of its NTH impair Arf1-catalyzed budding of COPI vesicles in vitro. Our data indicate that GTP-controlled local induction of high curvature membranes is an important property of Arf1 that might be shared by a subgroup of Arf/Arl family GTPases. 相似文献
2.
Andrew A. Bridges Maximilian S. Jentzsch Patrick W. Oakes Patricia Occhipinti Amy S. Gladfelter 《The Journal of cell biology》2016,213(1):23-32
Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. 相似文献
3.
Toll-like receptor 9 (TLR9) recognizes microbial DNA in endolysosomal compartments. The ectodomain of TLR9 must be proteolytically cleaved by endosomal proteases to produce the active receptor capable of inducing an innate immune signal. We show that the cleaved TLR9 ectodomain is a monomer in solution and that DNA ligands with phosphodiester backbones induce TLR9 dimerization in a sequence-independent manner. Ligands with phosphorothioate (PS) backbones induce the formation of large TLR9-DNA aggregates, possibly due to the propensity of PS ligands to self-associate. DNA curvature-inducing proteins including high-mobility group box 1 and histones H2A and H2B significantly enhance TLR9 binding, suggesting that TLR9 preferentially recognizes curved DNA backbones. Our work sheds light on the molecular mechanism of TLR9 activation by endogenous protein-nucleic acid complexes, which are associated with autoimmune diseases including systemic lupus erythematosus. 相似文献
4.
We have analyzed both biochemically and functionally a series of Arf6 mutants, providing new insights into the molecular mode of action of the small G protein Arf6. First, by comparing a fast-cycling mutant (Arf6(T157N)) and a GTPase-deficient mutant (Arf6(Q67L)), we established the necessity for completion of the Arf6 GDP/GTP cycle for recycling of major histocompatibility complex molecules to the plasma membrane. Second, we found that aluminum fluoride (AlF), known for inducing membrane protrusion in cells expressing exogenous wild-type Arf6, stabilized a functional wild-type Arf6.AlF(x) . GTPase-activating protein (GAP) complex in vitro and in vivo. We also found that the tandem mutation Q37E/S38I prevented the binding of two Arf GAPs, but not the effector ARHGAP10, and blocked the formation of membrane protrusion and actin reorganization. Together, our results with AlF(x) and Arf6(Q37E/S38I) demonstrate the critical role of the Arf6 GAPs as effectors for Arf6-regulated actin cytoskeleton remodeling. Finally, competition experiments conducted in vivo suggest the existence of a membrane receptor for GDP-bound Arf6. 相似文献
5.
Modulation of membrane curvature by peptides 总被引:3,自引:0,他引:3
The fusion of two stable bilayers likely proceeds through intermediates in which the membrane acquires curvature. The insertion of peptides into the membrane will affect its curvature tendency. Studies with a number of small viral fusion peptides indicate that these peptides promote negative curvature at low concentration. This is in accord with the curvature requirements to initiate membrane fusion according to the stalk-pore model. Although a characteristic of fusion peptides, the promotion of negative curvature is only one of several mechanisms by which fusion proteins accelerate the rate of fusion. In addition, the fusion peptide itself, as well as other regions in the viral fusion protein, facilitates membrane fusion by mechanisms that are largely independent of curvature. Leakage of the internal aqueous contents of liposomes is another manifestation of the alteration of membrane properties. Peptides exhibit quite different relative potencies between fusion and leakage that is determined by the structure and mode of insertion of the peptide into the membrane. 相似文献
6.
Aggregation of transmembrane proteins is important for many biological processes, such as protein sorting and cell signaling, and also for in vitro processes such as two-dimensional crystallization. We have used large-scale simulations to study the lateral organization and dynamics of lipid bilayers containing multiple inserted proteins. Using coarse-grained molecular dynamics simulations, we have studied model membranes comprising ∼7000 lipids and 16 identical copies of model cylindrical proteins of either α-helical or β-barrel types. Through variation of the lipid tail length and hence the degree of hydrophobic mismatch, our simulations display levels of protein aggregation ranging from negligible to extensive. The nature and extent of aggregation are shown to be influenced by membrane curvature and the shape or orientation of the protein. Interestingly, a model β-barrel protein aggregates to form one-dimensional strings within the bilayer plane, whereas a model α-helical bundle forms two-dimensional clusters. Overall, it is clear that the nature and extent of membrane protein aggregation is dependent on several aspects of the proteins and lipids, including hydrophobic mismatch, protein class and shape, and membrane curvature. 相似文献
7.
B-raf, a new member of the raf family, is activated by DNA rearrangement. 总被引:12,自引:12,他引:12
下载免费PDF全文

S Ikawa M Fukui Y Ueyama N Tamaoki T Yamamoto K Toyoshima 《Molecular and cellular biology》1988,8(6):2651-2654
Complementary DNA clones of a putative transforming gene were isolated from NIH 3T3 cells transformed with human Ewing sarcoma DNA. The gene was termed B-raf because it is related to but distinct from c-raf and A-raf. It appears that substitution in the amino-terminal portion of the normal B-raf protein confers transforming activity to the gene. 相似文献
8.
Khemtémourian L Buchoux S Aussenac F Dufourc EJ 《European biophysics journal : EBJ》2007,36(2):107-112
Secondary structures of the proto-oncogenic Neu/ErbB2 transmembrane segment and its mutant analogue have been determined in phospholipids. It is found that the mutated peptide possesses less helical character possibly due to the valine/glutamic acid point mutation. Embedding peptides in lipid systems whose topology can change from small (100-200 A) tumbling objects to bilayer discs of 450 A diameter leads to the finding that coiled-coil interactions are only observed in the presence of a bilayer membrane of low curvature, independent of mutation. This strongly suggests that any event that may change membrane topology can therefore perturb the dimerization/ologomerization and subsequent phosphorylation cascade leading to cell growth or cancer processes. 相似文献
9.
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P?] plays a fundamental role in clathrin-mediated endocytosis. However, precisely how PI(4,5)P? metabolism is spatially and temporally regulated during membrane internalization and the functional consequences of endocytosis-coupled PI(4,5)P? dephosphorylation remain to be explored. Using cell-free assays with liposomes of varying diameters, we show that the major synaptic phosphoinositide phosphatase, synaptojanin 1 (Synj1), acts with membrane curvature generators/sensors, such as the BAR protein endophilin, to preferentially remove PI(4,5)P? from curved membranes as opposed to relatively flat ones. Moreover, in vivo recruitment of Synj1's inositol 5-phosphatase domain to endophilin-induced membrane tubules results in fragmentation and condensation of these structures largely in a dynamin-dependent fashion. Our study raises the possibility that geometry-based mechanisms may contribute to spatially restricting PI(4,5)P? elimination during membrane internalization and suggests that the PI(4,5)P?-to-PI4P conversion achieved by Synj1 at sites of high curvature may cooperate with dynamin to achieve membrane fission. 相似文献
10.
Ramamurthi KS 《Current opinion in microbiology》2010,13(6):753-757
Bacteria often sort proteins to specific subcellular locations, but many of the chemical beacons that specify those sites and subsequently recruit proteins have not been identified. Recent reports suggest that some bacterial proteins localize to specific subcellular sites by recognizing either convex or concave membrane curvature. Thus, degrees of membrane curvature, dictated by the shape of the cell, can define a geometric cue for the recruitment of curvature-sensing proteins. 相似文献
11.
Kanse SM Gallenmueller A Zeerleder S Stephan F Rannou O Denk S Etscheid M Lochnit G Krueger M Huber-Lang M 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(6):2858-2865
Severe tissue injury results in early activation of serine protease systems including the coagulation and complement cascade. In this context, little is known about factor VII-activating protease (FSAP), which is activated by substances released from damaged cells such as histones and nucleosomes. Therefore, we have measured FSAP activation in trauma patients and have identified novel FSAP substrates in human plasma. Mass spectrometry-based methods were used to identify FSAP binding proteins in plasma. Anaphylatoxin generation was measured by ELISA, Western blotting, protein sequencing, and chemotaxis assays. Plasma samples from trauma patients were analyzed for FSAP Ag and activity, nucleosomes, C5a, and C3a. Among others, we found complement components C3 and C5 in FSAP coimmunoprecipitates. C3 and C5 were cleaved by FSAP in a dose- and time-dependent manner generating functional C3a and C5a anaphylatoxins. Activation of endogenous FSAP in plasma led to increased C5a generation, but this was not the case in plasma of a homozygous carrier of Marburg I single nucleotide polymorphism with lower FSAP activity. In multiple trauma patients there was a large increase in circulating FSAP activity and nucleosomes immediately after the injury. A high correlation between FSAP activity and C5a was found. These data suggest that activation of FSAP by tissue injury triggers anaphylatoxin generation and thereby modulates the posttraumatic inflammatory response in vivo. A strong link between C5a, nucleosomes, and FSAP activity indicates that this new principle might be important in the regulation of inflammation. 相似文献
12.
13.
Many cellular and intracellular processes critically depend on membrane shape, but the shape generating mechanisms are still to be fully understood. In this study we evaluate how electrostatic/electrokinetic forces contribute to membrane curvature. Membrane bilayer had finite thickness and was either elastically anisotropic or anisotropic overall, but isotropic per sections (heads and tails). The physics of the situation was evaluated using a coupled system of elastic and electrostatic/electrokinetic (Poisson-Nernst-Planck) equations. The fixed charges present only on the upper membrane surface lead to the accumulation of counter-ions and depletion of co-ions that decay spatially very rapidly (Debye length<1nm), as does the potential and electric field. Spatially uneven electric field and the permittivity mismatch also induce charges at the membrane-solution interface, which are not fixed but influence the electrostatics nevertheless. Membrane bends due to - Coulomb force (caused by fixed membrane charges in the electric field) and the dielectric force (due to the non-uniform electric field and the permittivity mismatch between the membrane and the solution). Both act as membrane surface forces, and both depend supra-linearly on the fixed charge density. Regardless of sign of the fixed charges, the membrane bends toward the charged (upper) surface owing to the action of the Coulomb force, but this is opposed by the smaller dielectric force. The spontaneous membrane curvature becomes very pronounced at high fixed charge densities, leading to very small spontaneous radii (<50nm). In conclusion the electrostatic/electrokinetic forces contribute significantly to the membrane curvature. 相似文献
14.
Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic 总被引:31,自引:0,他引:31
下载免费PDF全文

ADP-ribosylation factor (Arf) 6 regulates the movement of membrane between the plasma membrane (PM) and a nonclathrin-derived endosomal compartment and activates phosphatidylinositol 4-phosphate 5-kinase (PIP 5-kinase), an enzyme that generates phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we show that PIP2 visualized by expressing a fusion protein of the pleckstrin homology domain from PLCdelta and green fluorescent protein (PH-GFP), colocalized with Arf6 at the PM and on tubular endosomal structures. Activation of Arf6 by expression of its exchange factor EFA6 stimulated protrusion formation, the uptake of PM into macropinosomes enriched in PIP2, and recycling of this membrane back to the PM. By contrast, expression of Arf6 Q67L, a GTP hydrolysis-resistant mutant, induced the formation of PIP2-positive actin-coated vacuoles that were unable to recycle membrane back to the PM. PM proteins, such as beta1-integrin, plakoglobin, and major histocompatibility complex class I, that normally traffic through the Arf6 endosomal compartment became trapped in this vacuolar compartment. Overexpression of human PIP 5-kinase alpha mimicked the effects seen with Arf6 Q67L. These results demonstrate that PIP 5-kinase activity and PIP2 turnover controlled by activation and inactivation of Arf6 is critical for trafficking through the Arf6 PM-endosomal recycling pathway. 相似文献
15.
Kunding AH Mortensen MW Christensen SM Bhatia VK Makarov I Metzler R Stamou D 《Biophysical journal》2011,(11):2693-2703
The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes. 相似文献
16.
Recent reports on the interaction of cardiotoxin and melittin with phospholipid model membranes are reviewed and analyzed. These types of peptide toxins are able to modulate lipid surface curvature and polymorphism in a highly lipid-specific way. It is demonstrated that the remarkable variety of effects of melittin on the organization of different membrane phospholipids can be understood in a relatively simple model, based on the shape-structure concept of lipid polymorphism and taking into account the position of the peptide molecule with respect to the lipids. Based on the strong preference of the peptides for negatively charged lipids and the structural consequences thereof, and on preliminary studies of signal peptide-lipid interaction, a role of inverted or concave lipid structures in the process of protein translocation across membranes is suggested. 相似文献
17.
Calcium signalling mechanisms in endoplasmic reticulum activated by inositol 1,4,5-trisphosphate and GTP 总被引:5,自引:0,他引:5
Ca2+ signals are known to mediate an array of cellular functions including secretion, contraction, and conductivity changes. In spite of the obvious role of Ca2+ in signalling, the control of Ca2+ within cells is known to be a complex phenomenon involving a number of distinct active and passive transport systems functioning within different organelles. Inositol 1,4,5-trisphosphate (IP3) is now established as a central mediator of Ca2+ mobilization, and the endoplasmic reticulum (ER) has been considered to be the site of action of IP3. However, this role has been ascribed almost by default to the ER, based on the knowledge that IP3 functions to release Ca2+ from an intracellular, nonmitochondrial, Ca2+-pumping organelle. Our interest has been to ascertain by what mechanism IP3 activates Ca2+ movements, at what intracellular locations it functions, and how the size and replenishment of the IP3-sensitive Ca2+ pool occurs. During the course of such studies, another mechanism inducing profound movements of Ca2+ within cells was identified. This process is activated by a highly sensitive and specific guanine nucleotide regulatory mechanism, which, while inducing fluxes of Ca2+ that resemble the action of IP3 under certain conditions, has now been determined to involve a quite distinct mechanism. The characteristics of this mechanism are described below. Although involving a very different Ca2+ translocation process to that activated by IP3, several important conclusions have been drawn on the relationship between IP3- and GTP-activated Ca2+ movements leading us to believe that the latter may have a regulatory role in controlling the size and/or entry of Ca2+ into the IP3-sensitive Ca2+ pool. 相似文献
18.
The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP 总被引:6,自引:0,他引:6
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane. 相似文献
19.
Patricia Bassereau Bruno Goud Jean‐Baptiste Manneville Bruno Antonny 《The EMBO journal》2010,29(2):292-303
ArfGAP1, which promotes GTP hydrolysis on the small G protein Arf1 on Golgi membranes, interacts preferentially with positively curved membranes through its amphipathic lipid packing sensor (ALPS) motifs. This should influence the distribution of Arf1‐GTP when flat and curved regions coexist on a continuous membrane, notably during COPI vesicle budding. To test this, we pulled tubes from giant vesicles using molecular motors or optical tweezers. Arf1‐GTP distributed on the giant vesicles and on the tubes, whereas ArfGAP1 bound exclusively to the tubes. Decreasing the tube radius revealed a threshold of R≈35 nm for the binding of ArfGAP1 ALPS motifs. Mixing catalytic amounts of ArfGAP1 with Arf1‐GTP induced a smooth Arf1 gradient along the tube. This reflects that Arf1 molecules leaving the tube on GTP hydrolysis are replaced by new Arf1‐GTP molecules diffusing from the giant vesicle. The characteristic length of the gradient is two orders of magnitude larger than a COPI bud, suggesting that Arf1‐GTP diffusion can readily compensate for the localized loss of Arf1 during budding and contribute to the stability of the coat until fission. 相似文献
20.
The role of intracellular Ca2+ as essential activator of the Na+---Ca2+ exchange carrier was explored in membrane vesicles containing 67% right-side-out and 10% inside-out vesicles, isolated from squid optic nerves. Vesicles containing 100 μM free calcium exhibited a 2-fold increase in the initial rate of Nai+-dependent Ca2+ uptake as compared with vesicles where intravesicular calcium was chelated by 2 mM EGTA or 10 mM HEDTA. The activatory effect exerted by intravesicular Ca2+ on the reverse mode of Na+---Ca2+ exchange (i.e. Nai+---Ca02+ exchange) is saturated at about 100 μM Cai2+ and displays an apparent K1/2 of 12 μM. Intravesicular Ca2+ produced activation of Nai+---Ca02+ exchange activity rather than an increase in Ca2+ uptake due to Ca2+---Ca2+ exchange. The presence of Cai2+ was essential for the Nai+-dependent Na+ influx, a partial reaction of the Na+---Ca2+ exchanger. In fact, the Na+ influx levels in vesicles loaded with 2 mM EGTA were close to those expected from diffusional leak while in vesicles containing Cai2+ an additional Na+---Na+ exchange was measured. The results suggest that in nerve membrane vesicles Ca2+ at the inner aspect of the membrane acts as an activator of the Na+---Ca2+ exchange system. 相似文献