首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modeling soil water movement with water uptake by roots   总被引:16,自引:0,他引:16  
Wu  Jinquan  Zhang  Renduo  Gui  Shengxiang 《Plant and Soil》1999,215(1):7-17
Soil water movement with root water uptake is a key process for plant growth and transport of water and chemicals in the soil-plant system. In this study, a root water extraction model was developed to incorporate the effect of soil water deficit and plant root distributions on plant transpiration of annual crops. For several annual crops, normalized root density distribution functions were established to characterize the relative distributions of root density at different growth stages. The ratio of actual to potential cumulative transpiration was used to determine plant leaf area index under water stress from measurements of plant leaf area index at optimal soil water condition. The root water uptake model was implemented in a numerical model. The numerical model was applied to simulate soil water movement with root water uptake and simulation results were compared with field experimental data. The simulated soil matric potential, soil water content and cumulative evapotranspiration had reasonable agreement with the measured data. Potentially the numerical model implemented with the root water extraction model is a useful tool to study various problems related to flow transport with plant water uptake in variably saturated soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Water uptake profile response of corn to soil moisture depletion   总被引:5,自引:1,他引:5  
The effects of soil moisture distribution on water uptake of drip‐irrigated corn were investigated by simultaneously monitoring the diurnal evolution of sap flow rate in stems, of leaf water potential, and of soil moisture, during intervals between successive irrigations. The results invalidate the steady‐state resistive flow model for the continuum. High hydraulic capacitance of wet soil and low hydraulic conductivity of dry soil surrounding the roots damped significantly diurnal fluctuations of water flow from bulk soil to root surface. By contrast, sap flow responded directly to the large diurnal variation of leaf water potential. In wet soil, the relation between the diurnal courses of uptake rates and leaf water potential was linear. Water potential at the root surface remained nearly constant and uniformly distributed. The slope of the lines allowed calculating the resistance of the hydraulic path in the plant. Resistances increased in inverse relation with root length density. Soil desiccation induced a diurnal variation of water potential at the root surface, the minimum occurring in the late afternoon. The increase of root surface water potential with depth was directly linked to the soil desiccation profile. The development of a water potential gradient at the root surface implies the presence of a significant axial resistance in the root hydraulic path that explains why the desiccation of the soil upper layer induces an absolute increase of water uptake rates from the deeper wet layers.  相似文献   

3.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

4.
Huang  Bingru 《Plant and Soil》1999,208(2):179-186
Effects of localized soil drought stress on water relations, root growth, and nutrient uptake were examined in drought tolerant ‘Prairie’ buffalograss [Buchloe dactyloides (Nutt.) Engelm.] and sensitive ‘Meyer’ zoysiagrass (Zoysia japonica Steud.). Grasses were grown in small rhizotrons in a greenhouse and subjected to three soil moisture regimes: (1) watering the entire 80-cm soil profile (well-watered control); (2) drying 0–40 cm soil and watering the lower 40 cm (partially dried); (3) and drying the entire soil profile (fully dried). Drying the 0–40 cm soil for 28 days had no effect on leaf water potential (Ψ leaf ) in Prairie buffalograss compared to the well-watered control but reduced that in Meyer zoysiagrass. Root elongation rate was greater for Prairie buffalograss than Meyer zoysiagrass under well-watered or fully dried conditions. Rooting depth increased with surface soil drying; with Prairie buffalograss having a larger proportion of roots in the lower 40 cm than Meyer zoysiagrass. The higher rates of water uptake in the deeper soil profile in the partially dried compared to the well-watered treatment and by Prairie buffalograss compared to Meyer zoysiagrass could be due to differences in root distribution. Root 15N uptake for Prairie buffalograss was higher in 0–20 cm drying soil in the partially dried treatment than in the fully dried treatment. Diurnal fluctuations in soil water content in the upper 20 cm of soil when the lower 40 cm were well-watered indicated water efflux from the deeper roots to the drying surface soil. This could help sustain root growth, maintain nutrient uptake in the upper drying soil layer, and prolong turfgrass growth under localized drying conditions, especially for the deep-rooted Prairie buffalograss. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Moran  C. J.  Pierret  A.  Stevenson  A. W. 《Plant and Soil》2000,223(1-2):101-117
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Erkki Aura 《Plant and Soil》1996,186(2):237-243
The assumption of uniform water flow to the root or uniform water potential at the root surface was shown by Hainsworth and Aylmore (1986, 1989) to be erroneous. The present paper demonstrates how the non-uniform uptake of water by a single root can be modeled. Differential equations are numerically solved to describe simultaneous water movement in the plant and in the soil. In the plant, boundary conditions are the water potentials at the root surface (Ψs) and in the xylem at the root base (Ψb). A set of difference equations describe the flow of water radially through the cortex to the xylem and in the xylem axially upwards to the base. For calculating the water flow in the soil and the values of Ψs, i.e. the boundary conditions for flow in the root, the finite element method (FEM) is used, the boundary conditions being the flux of water into the plant root and the zero flow across the wall, bottom and surface of a hypothetical soil cylinder surrounding the root. ei]Section editor: B E Clothier  相似文献   

7.
Using the technique of Computer Assisted Tomography applied to gamma ray attenuation measurement of soil water content, it has been shown that the assumption of uniform absorption of soil water along a plant root is clearly erroneous and that drawdown distance is a function of time. The results suggest that the plant sequentially removes water from the top to the bottom of the root as soil hydraulic resistance becomes a major limiting factor in the upper layers, even at the high soil water potential (–0.30 MPa) used.  相似文献   

8.
根据土壤-根系统中水分守恒和水势对水分运输作用的原理, 建立了土壤中非均匀水势作物根系吸水模型。在该模型中, 分别对一次函数和指数函数两种不同的非均匀土壤水势的表达形式建立模型, 并对非均匀水势和均匀水势下模型的解析解之间的关系进行了探讨; 利用该模型讨论根系的吸收阻力和木质部传导阻力的比率对根吸水的影响; 运用阻力比率的合理生理范围确定根生长的优化长度。结果表明: 在特定情况下, 非均匀水势下的根系吸水模型可以用于均匀水势, 对Poiseuille公式进行修正后得到的根的优化长度接近实际值。  相似文献   

9.
采用空间代时间的方法,以高寒嵩草草甸不同退化演替状态土壤物理性质(土壤机械阻力、温度、湿度)为变量,探讨高寒草甸不同退化阶段土壤物理性质同植物根系生长特质的相互关系。结果表明:高寒嵩草草甸根系分布具有明显的"V"型垂直构型特征;高寒嵩草草甸根系以细根为主,直径<0.5 mm的根系占全剖面根系总长的90.8%—93.6%。土壤紧实度和土壤湿度与植物根系直径细化具有显著的正相关关系(P<0.05);土壤温度与根系细化之间具有显著的负相关关系(P<0.05),且其对高寒嵩草草甸根系生长特性形成的贡献率最高,说明高寒嵩草草甸植物根系生长构型特征的主控因子为温度。高寒嵩草草甸根系细化及表聚现象与土壤物理性质之间具有一定程度的互馈效应。低温、高紧实度和较高的土壤湿度有助于形成高密度和细根构型的草毡表层,这种土壤根系构型也是高寒草甸植物群落为适应放牧干扰及恶劣环境的应激性改变。该发现对明晰草地退化演替过程中生态系统构件对外界干扰改变的响应和适应过程及为制定合理有效的退化高寒草甸恢复措施提了供理论依据。  相似文献   

10.
为了明确华北严重缺水区晚播冬小麦灌水对根系时空分布和土壤水分利用规律的影响,以冬小麦石麦15为材料,利用田间定位试验研究了不同灌水处理(春季不灌水W0;春季灌拔节水75mm,W1;春季灌起身水、孕穗水和灌浆水共225mm,W3)对根系干重密度(DRWD)、根长密度(RLD)、体积密度、分枝数等在0—200cm土层的垂直分布、动态变化及其对耗水和产量的影响,结果表明:随着春季灌水量的减少,开花后0—80cm土层的根干重密度、根长度密度、体积密度和分枝数密度均显著减少,80cm—200m土层的根干重密度、根长度密度、体积密度和分枝数密度却显著增加,并且显著增加冬小麦在灌浆期间对100cm以下深层土层水分的利用,总耗水量W1和W0分别比W3减少70.9mm、115.1mm,土壤耗水量分别比W3增加79.1mm、108.9mm,子粒产量W1和W0分别比W3减少653.3kg/hm2、1470kg/hm2,水分利用效率(WUE)则分别比W3提高0.09kg/m3、0.06kg/m3。晚播冬小麦春季灌1水(拔节水)可以促进根系深扎,增加深土层的根系分布量,提高对深层土壤贮水的吸收利用量,有利于实现节水与高产的统一。  相似文献   

11.
《植物生态学报》2018,42(9):885
根系吸水是树木水分关系的重要环节, 在树木生理活动中发挥着至关重要的作用。深层土壤中的水资源含量一般相对较高, 常可为树木生长供给大量水分, 并在旱季保障其生存与正常生长。因此, 了解树木对深层土壤水的吸收利用特征与机制, 可帮助深入认识树木与环境的互作机制、树木的生长与生存策略、物种间的共存与竞争机制等内容, 同时还可帮助构建既能降低外部水资源投入, 又能避免水分生态环境负面效应的人工林绿色栽培制度。基于已有研究, 该文对树木吸收利用深层土壤水的特征与机制进行了综述。首先, 探讨了深层根系和深层土壤的界定, 指出对于除寒温带针叶林以外的其他主要森林植被类型, 可以1 m作为树木深根系和深土层的平均划分(参考)标准, 并明确了全球范围内树木深根系的成因。其次, 对已有研究中观察到的树木对深层土壤水的吸收利用特征及其影响因素进行了归纳与总结, 并从深根系性状调节、整株水力特性协调两方面探讨了树木高效吸收利用深层土壤水的机制, 如可通过深根系的空间、时间和效率调节策略来促进对深土层水分的吸收。最后, 提出了树木利用深土层水分对人工林培育的几点启示, 包括水分管理.中应使林木适度利用深层土壤水, 选用合适的灌水频率、合理的树种混交能促进深层土壤水分储库“缓冲”作用的发挥, 基于树木土壤水分利用深度的间伐木选择技术等, 并指出了该领域现有研究的不足以及今后的发展方向。  相似文献   

12.
Since the oxygen isotopic ratio of water extracted from stems reflects that of water taken up by roots, the stem water isotope ratio can be used to analyze the source of water for plant growth. However, it is known that the fractionation of isotopes during evaporation from the surface soil increases the isotope ratio in soil water drastically. In this study, it was experimentally confirmed that the stem water of Elaeocarpus sylvestris vs. ellipticus Hara seedlings is not isotopically similar to the water source in the case where evaporation from the soil occurs actively. However, since water in these plant bodies was replaced in about 2 days in the pot experiments, the 2-day-averaged values of the soil water isotope ratio approached the stem water isotope ratio. Thus, time-course samplings of the soil and stems, and measurements of the replacement time of water in the plant body (water volume in plant/transpiration rate) are recommended for correct interpretation of the isotopic signature of soil water and stem water.  相似文献   

13.
Analysis of the effects of soil management practices on crop production requires knowledge of these effects on plant roots. Much time is required to wash plant roots from soil and separate the living plant roots from organic debris and previous years’ roots. We developed a root washer that can accommodate relatively large soil samples for washing. The root washer has a rotary design and will accommodate up to 24 samples (100 mm diam. by 240 mm long) at one time. We used a flat-bed scanner to digitize an image of the roots from each sample and used a grid system with commercially-available image analysis software to analyze each sample for root surface area. Sensitivity analysis and subsequent comparisons of ‘dirty’ samples containing the roots and all the organic debris contained in the sample and ‘clean’ samples where the organic debris was manually removed from each sample showed that up to 15% of the projected image could be coveredwith debris without affecting accuracy and precision of root surface area measurements. Samples containing a large amount of debris may need to be partitioned into more than one scanning tray to allow accurate measurements of the root surface area. Sample processing time was reduced from 20 h, when hand separation of roots from debris was used, to about 0.5 h, when analyzing the image from an uncleaned sample. The method minimizes the need for preprocessing steps such as dying the roots to get better image contrast for image analysis. Some information, such as root length, root diameter classes and root weights, is not obtained when using this technique. Root length measurements, if needed, could be made by hand on the digital images. Root weight measurement would require sample cleaning and the advantage of less processing time per sample with this method would be lost. The significance of the tradeoff between information not obtained using this technique and the ability to process a greater number of samples with the time and personnel resources available must be determined by the individual researcher and research objectives.  相似文献   

14.
植物根系吸水过程中根系水流阻力的变化特征   总被引:3,自引:0,他引:3  
以植物根系吸水的人工模拟试验所测得的数据为依据,运用水流的电模拟原理,定理分析了不同土壤水分水平处理下植物根系吸水过程中根系水流阻力各主要分量的大小、变化规律及其相对重要性.结果表明,在同一水分水平处理中,植物根内木质部传导阻力(Rc)随生长时间的推移而减小,随土层深度的加深而增大,土根接触阻力(Rsr)、植物根系吸收阻力(Rr)随生长时间表现出先下降后上升阶段的动态变化特征;在不同水分水平处理中,Rc、Rsr、Rr均随土壤湿度减小而大幅度增大;在植物根系水流阻力各分量中,Rr占根系水流阻力的比例为55%~96%,Rsr约占根系水流阻力的4%~45%,而Rc仅占根系水流阻力的7×10-6,故Rr是决定植物根系吸水速率的重要因素  相似文献   

15.
干旱区植物群落土壤水盐及根系生物量的空间分布格局   总被引:12,自引:1,他引:12  
王珺  刘茂松  盛晟  徐驰  刘小恺  王汉杰 《生态学报》2008,28(9):4120-4127
为研究干旱区群落根系生物量的空间分布格局及其与土壤中水分、盐分的关系,以宁夏沙湖地区的沙枣-芨芨草群落为研究对象,以立木冠幅的20%为带宽,由立木向空旷地依次划分8个冠幅梯度带(Z1-Z8),采用分层挖掘法对群落中植物根系生物量密度、土壤含水率、土壤溶液电导率的垂直与水平分布特征进行了研究.结果表明:随着离沙枣立木距离的增加,群落中植物根系生物量密度逐渐减小,总根系生物量密度较高层次的埋深渐次增加,各层次土壤含水率及不同土壤层次间土壤含水率的差异性依次变大,表浅层土壤溶液电导率趋势性上升,但在较深层次,位于立木冠层垂直投影区边缘的Z3带的电导率最低,向沙枣立木方向、空旷地方向两侧递增;同时发现,群落中两种主要物种间根系生物量密度较高的土壤层次总体上相互分离,离立木较近各带出现下层土壤含水率低于上层的逆含水率梯度层.总体上,群落中地下生物量、土壤水分、土壤溶液电导率的垂直与水平分布特征揭示,植物根系吸水与土壤水分蒸发是影响土壤剖面中盐分、水分分布与运动的两个主导因子.  相似文献   

16.
The vertical distribution of maize roots was studied in four contrasting soils, (arenosols, luvisols, planosols and vertisols) by using in-situ root mapping on vertical planes. The relationship between root contact frequency and depth was different for each soil, with a relatively low field-to-field variability within each soil type. The general aspect of this relationship did not change appreciably for three years in arenosols, with a low colonization in sandy layers probably being due to mechanical barriers. The relationship was consistently non-monotonic in luvisols and planosols, because of the sparse colonization of sandy layers. In planosols, these layers were traversed by some primary roots, which were essentially clustered in animal burrows. The distribution of root contact frequency was closer to an exponential function in vertisols. In these soils rooting depth and colonization of deep soil layers showed a marked increase during two dry years compared with a wet year. This was probably due to a denser net of shrinkage cracks and slickensides, where roots were essentially located in dry years. These results raise the possibility of modelling the decrease in root distribution with depth using soil information and climatic characteristics.  相似文献   

17.
North  Gretchen B.  Nobel  Park S. 《Plant and Soil》1997,191(2):249-258
Water movement between roots and soil can be limited by incomplete root–soil contact, such as that caused by air gaps due to root shrinkage, and can also be influenced by rhizosheaths, composed of soil particles bound together by root exudates and root hairs. The possible occurrence of air gaps between the roots and the soil and their consequences for the hydraulic conductivity of the root–soil pathway were therefore investigated for the cactus t Opuntia ficus-indica, which has two distinct root regions: a younger, distal region where rhizosheaths occur, and an older, proximal region where roots are bare. Resin-embedded sections of roots in soil were examined microscopically to determine root–soil contact for container-grown plants kept moist for 21 days, kept moist and vibrated to eliminate air gaps, droughted for 21 days, or droughted and vibrated. During drought, roots shrank radially by 30% and root–soil contact in the bare root region of nonvibrated containers was reduced from 81% to 31%. For the sheathed region, the hydraulic conductivity of the rhizosheath was the least limiting factor and the root hydraulic conductivity was the most limiting; for the bare root region, the hydraulic conductivity of the soil was the least limiting factor and the hydraulic conductivity of the root–soil air gap was the most limiting. The rhizosheath, by virtually eliminating root–soil air gaps, facilitated water uptake in moist soil. In the bare root region, the extremely low hydraulic conductivity of the root–soil air gap during drought helped limit water loss from roots to a drier soil.  相似文献   

18.
Aims Optimizing water and fertilizer management for crops requires an understanding of root distribution. Maize (Zea maysL.) is currently the most widely planted cereal crop in China, yet the vertical distribution of maize roots across different regions remains unknown. The aims of this work were (i) to quantify the effects of climate and soil texture on the vertical distribution of maize roots, and (ii) to show the depth distribution of root biomass in China.  相似文献   

19.
松嫩平原不同株型玉米品种根系分布特征比较研究   总被引:3,自引:1,他引:2  
采用土柱模拟栽培法与大田试验相结合的方法,对松嫩平原不同株型玉米的根系分布特征进行了比较。结果表明,平展型玉米和紧凑型玉米根干重最大值出现的时期不同,二者根干重分别在抽丝后15d和抽丝后30d时达到最大值,成熟时紧凑型玉米根干重比平展型高12.2%,二者根系垂直分布有明显的差异,在20cm以下的根干重比率,平展型玉米在19%以下,而紧凑型玉米高于23%,紧凑型玉米的深层根量较多,在深40~100cm土层内根干重比率比平展型高42.3%,二者的根系水平分布也不同,紧凑型玉米根系水平分布较集中,在距植株0~10cm水平范围内,根系分布比率比平展型玉米高9.6%,紧凑型玉米深层根量较多,水平分布集中,耐密植,是易获得高产的重要原因之一。  相似文献   

20.
Brady  D. J.  Gregory  P. J.  Fillery  I. R. P. 《Plant and Soil》1993,(1):155-158
A technique was developed to determine the physiological activity of defined sections of seminal roots of wheat grown in sand. Wheat plants were grown for 2 weeks in narrow columns of N-deficient sand to which all other nutrients had been added. The columns were split longitudinally and 15N-labelled nitrate, in an agar medium, supplied to 2 cm sections of root. Shoots and roots were analysed after 24 h to determine the uptake of 15N. Three sections were examined on either the secondary or tertiary seminal root: 1 cm from the seed (basal segment), 35 cm from the seed (middle segment) and 4 cm from the root apex (apical segment). Total uptake was greatest from the basal and middle segments, declining by 50% from the apical segment. However, uptake per unit root length, including exposed sections of lateral roots, was not significantly different along the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号