首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the isolation of membrane-bound Na,K-ATPase in quantity from brain gray matter is described. The method permits a large amount of enzyme to be obtained rather quickly with about 60% of the original activity of Na,K-ATPase of the tissue being recovered. The enzyme is stable, it has a specific activity of about 200 μmoles ATP split per mg protein per hour. Mg-ATPase comprises about 1% of the total ATPase activity. The enzymatic properties of this Na,K-ATPase do not differ from those in the literature; the turnover number is about 9300 min?1.  相似文献   

2.
In our previous study, we ware successful in isolation and purification of an endogenous inhibitor of the Na/Ca exchanger (NCX1) from the calf ventricle extracts. The purified factor has characterized to have strong positive inotropic effect on isometric contractions of isolated ventricle strips of guinea pig. A possibility is that besides the NCX1 the endogenous factor may also interact with other ion-transport systems (e.g., Na,K-ATPase) involved in modulation of muscle contractility-relaxation. Therefore, a primary goal of the present study was to detect a possible effect of newly found NCX1 inhibitor on Na,K-ATPase and Ca-ATPase activities. The preparations of isolated sarcolemma vesicles were used for this goal. Although the crude extracts of calf ventricles can inhibit both the Na/Ca exchange and Na,K-ATPase, these two inhibitory activities can be separated on the Sephadex G-10 column, meaning that different molecular entities might be responsible for inhibition of Na/Ca exchange and Na,K-ATPase. Addition of 100 U of purified endogenous factor to the assay medium results in nearly complete inhibition of forward (Na(i)-dependent Ca-uptake) and reverse (Na(o)-dependent Ca-efflux) modes of Na/Ca exchange. On the other hand, no effect was detected on activities of Na,K-ATPase and Ca-ATPase even in the presence of 500 U of purified factor in the assay medium. In light of the present data, it is concluded that the endogenous inhibitor of NCX1 does not resemble the targeting properties of digitalis like compound. Obviously, more systematic studies are required in the future for resolving a possible interaction of the endogenous inhibitor of NCX1 with other ion-transport systems involved in calcium homeostasis and action potential.  相似文献   

3.
A procedure was developed for the analytical isolation of brush border and basal lateral plasma membranes of intestinal epithelial cells. Brush border fragments were collected by low speed centrifugation, disrupted in hypertonic sorbitol, and subjected to density gradient centrifugation for separation of plasma membranes from nuclei and core material. Sucrase specific activity in the purified brush border plasma membranes was increased fortyfold with respect to the initial homogenate. Basal lateral membrane were harvested from the low speed supernatant and resolved from other subcellular components by equilibrium density gradient centrifugation. Recovery of Na, K-ATPase activity was 94%, and 61% of the recovered activity was present in a single symmetrical peak. The specific activity of Na, K-ATPase was increased twelvefold, and it was purified with respect to sucrase, succinic dehydrogenase, NADPH-cytochrome c reductase, nonspecific esterase, beta-glucuronidase, DNA, and RNA. The observed purification factors are comparable to results reported for other purification procedures, and the yield of Na, K-ATPase is greater by a factor of two than those reported for other procedures which produce no net increase in the Na, K-ATPase activity. Na, K-ATPase rich membranes are shown to originate from the basal lateral plasma membranes by the patterns of labeling that were produced when either isolated cells or everted gut sacs were incubated with the slowly permeating reagent 35S-p-(diazonium)-benzenesulfonic acid. In the former case subsequently purified Na, K-ATPase rich and sucrase rich membranes are labeled to the same extent, while in the latter there is a tenfold excess of label in the sucrase rich membranes. The plasma membrane fractions were in both cases more heavily labeled than intracellular protein. Alkaline phosphatase and calcium-stimulated ATPase were present at comparable levels on the two aspects of the epithelial cell plasma membrane, and 25% of the acid phosphatase activity was present on the basal lateral membrane, while it was absent from the brush border membrane. Less than 6% of the total Na, K-ATPase was present in brush border membranes.  相似文献   

4.
Using cupric phenanthroline as a cross-linking agent, we have shown that melittin induced time-dependent aggregations of Na,K-ATPase in microsomal fractions and in preparations of purified Na,K-ATPase from duck salt glands. Incubation of melittin with these preparations also led to the progressive loss of Na,K-ATPase activity. At melittin/protein molar ratio of 5:1, we did not observe inhibition of Na,K-ATPase in the microsomal fraction but the process of enzyme aggregation occurred. At higher melittin/protein molar ratios (10:1 and 30:1), the inhibition of the enzyme and its aggregation proceeded simultaneously but the rates of these processes and maximal values achieved were different. At a melittin/protein ratio of 30:1, Na,K-ATPase inhibition may be described as a biexponential curve with the values for pseudo-first order rate constants being 2.7 and 0.15 min(-1). However, the aggregation may be presented by a monoexponential curve with a pseudo-first order rate constant of 0.15 min(-1). In purified preparations of Na,K-ATPase, the maximal aggregation (about 90%) was achieved at a melittin/protein molar ratio of 2:1, and a further increase in the melittin/protein ratio increased the rate of aggregation but did not affect the value of maximal aggregation. The results show that melittin induced both aggregation and inhibition of Na,K-ATPase but these two processes proceeded independently.  相似文献   

5.
We describe and compare the main kinetic characteristics of rabbit kidney Na,K-ATPase incorporated inside-out in DPPC:DPPE-liposomes with the C(12)E(8) solubilized and purified form. In proteoliposomes, we observed that the ATP hydrolysis of the enzyme is favored and also its affinity for Na(+)-binding sites increases, keeping the negative cooperativity with two classes of hydrolysis sites: one of high affinity (K(0.5)=6 microM and 4 microM for reconstituted enzyme and purified form, respectively) and another of low affinity (K(0.5)=0.4 mM and 1.4 mM for reconstituted enzyme and purified form, respectively). Our data showed a biphasic curve for ATP hydrolysis, suggesting the presence of (alphabeta)(2) oligomer in reconstituted Na,K-ATPase similar to the solubilized enzyme. The Mg(2+) concentration dependence in the proteoliposomes stimulated the Na,K-ATPase activity up to 476 U/mg with a K(0.5) value of 0.4 mM. The Na(+) ions also presented a single saturation curve with V(M)=551 U/mg and K(0.5)=0.2 mM with cooperative effects. The activity was also stimulated by K(+) ions through a single curve of saturation sites (K(0.5)=2.8 mM), with cooperative effects and V(M)=641 U/mg. The lipid microenvironment close to the proteic structure and the K(+) internal to the liposome has a key role in enzyme regulation, affecting its kinetic parameters while it can also modulate the enzyme's affinity for substrate and ions.  相似文献   

6.
Using cupric phenanthroline as a cross-linking agent, we have shown that melittin induced time-dependent aggregations of Na,K-ATPase in microsomal fractions and in preparations of purified Na,K-ATPase from duck salt glands. Incubation of melittin with these preparations also led to the progressive loss of Na,K-ATPase activity. At melittin/protein molar ratio of 5:1, we did not observe inhibition of Na,K-ATPase in the microsomal fraction but the process of enzyme aggregation occurred. At higher melittin/protein molar ratios (10:1 and 30:1), the inhibition of the enzyme and its aggregation proceeded simultaneously but the rates of these processes and maximal values achieved were different. At a melittin/protein ratio of 30:1, Na,K-ATPase inhibition may be described as a biexponential curve with the values for pseudo-first order rate constants being 2.7 and 0.15 min−1. However, the aggregation may be presented by a monoexponential curve with a pseudo-first order rate constant of 0.15 min−1. In purified preparations of Na,K-ATPase, the maximal aggregation (about 90%) was achieved at a melittin/protein molar ratio of 2:1, and a further increase in the melittin/protein ratio increased the rate of aggregation but did not affect the value of maximal aggregation. The results show that melittin induced both aggregation and inhibition of Na,K-ATPase but these two processes proceeded independently.  相似文献   

7.
Na/K-ATPase of salt-stressed salt glands of the domestic duck (Anas platyrhynchos) was purified in membrane-bound form by incubation of the microsomal fraction with sodium dodecylsulphate and ATP followed by discontinuous sucrose gradient centrifugation. Gel electrophoresis of the purified plasma membrane preparation substantially showed the two polypeptide subunits of the Na/K-ATPase both of which stained with the periodic acid-Schiff reagent. About 99% of the total ATPase activity was ouabain-inhibitable amounting to 1300 mumol Pi/(mg protein X h) of specific activity. The anion-stimulated, ouabain-insensitive ATPase increased parallel to the Na/K-ATPase up to the microsomal fraction until it totally vanished during SDS incubation. Electron microscopy of thin sections revealed that the purified fraction consisted of flat and cup-shaped triple-layered membrane fragments. Particles arranged into clusters and strands were visible as 3 to 5 nm surface particles in negatively stained suspensions and as 8 to 10 nm intramembraneous particles in freeze fracture replicas. The differential distribution of the intramembraneous particles on the fracture faces reflected the structural membrane asymmetry. Solubilization of Na/K-ATPase led to the disappearance of intramembraneous particles. Incorporation of the solubilized enzyme into phosphatidylcholine vesicles again showed 8 to 10 nm particles apparently orientated at random in the artificial membrane. Control liposomes prepared in the absence of solubilized enzyme were devoid of intramembraneous particles. These results clearly demonstrate that the avian salt gland Na/K-ATPase exists as 8 to 10 nm particles in both the purified plasma membrane and the artificial phospholipid membrane.  相似文献   

8.
The effects and modes of action of certain lipid second messengers and protein kinase C regulators, such as sphingosine, lysophosphatidylcholine (lyso-PC), and oleic acid, on Na,K-ATPase and sodium pump were examined. Inhibition of purified rat brain synaptosome Na,K-ATPase by these lipid metabolites, unlike that by ouabain, was subject to membrane dilution (i.e. inhibition being counteracted by increasing amounts of membrane lipids). Kinetic analysis, using the purified enzyme, indicated that sphingosine and lyso-PC were likely to interact, directly or indirectly, with Na+-binding sites of Na,K-ATPase located at the intracellular face of plasma membranes, a conclusion also supported by studies on Na,K-ATPase and 22Na uptake using the inside-out vesicles of human erythrocyte membranes. The studies also showed that ouabain (but not sphingosine and lyso-PC) increased the affinity constant (K0.5) for K+, whereas sphingosine and lyso-PC (but not ouabain) increased K0.5 for Na+. Sphingosine and lyso-PC inhibited 86Rb uptake by intact human leukemia HL-60 cells at potencies comparable to those for inhibitions of purified Na,K-ATPase and protein kinase C. It is suggested that Na,K-ATPase (sodium pump) might represent an additional target system, besides protein kinase C, for sphingosine and possibly other lipid second messengers.  相似文献   

9.
Summary A procedure was developed for the analytical isolation of brush border and basal lateral plasma membranes of intestinal epithelial cells. Brush border fragments were collected by low speed centrifugation, disrupted in hypertonic sorbitol, and subjected to density gradient centrifugation for separation of plasma membranes from nuclei and cole material. Sucrase specific activity in the purified brush border plasma membrane was increased fortyfold with respect to the initial homogenate. Basal lateral membrane were harvested from the low speed supernatant and resolved from other subcellular components by equilibrium density gradient centrifugation. Recovery of Na, K-ATPase activity was 94%, and 61% of the recovered activity was present in a single symmetrical peak. The specific activity of Na, K-ATPase was increased twelvefold, and it was purified with respect to sucrase, succinic dehydrogenase, NADPH-cytochromec reductase, nonspecific esterase, -glucoronidase, DNA, and RNA. The observed purification factors are comparable to results reported for other purification procedures, and the yield of Na, K-ATPase is greater by a factor of two than those reported for other procedures which produce no net increase in the Na, K-ATPase activity.Na, K-ATPase rich membranes are shown to originate from the basal lateral plasma membranes by the patterns of labeling that were produced when either isolated cells or everted gut sacs were incubated with the slowly permeating reagent35S-p-(diazonium)-benzenesulfonic acid. In the former case subsequently purified Na, K-ATPase rich and sucrase rich membranes are labeled to the same extent, while in the latter there is a tenfold excess of label in the sucrase rich membranes. The plasma membrane fractions were in both cases more heavily labeled than intracellular protein.Alkaline phosphatase and calcium-stimulated ATPase were present at comparable levels on the two aspects of the epithelial cell plasma membrane, and 25% of the acid phosphatase activity was present on the basal lateral membrane, while it was absent from the brush border membrane. Less than 6% of the total Na, K-ATPase was present in brush border membranes.  相似文献   

10.
11.
The distribution pattern of marker enzymes (Na, K-ATPase, acetylcholinesterase) in three fractions of synaptic membranes (SM) of rat brain were studied. The effects of three anticonvulsive agents on Na, K-ATPase from the total fraction of rat brain SM and purified membrane preparation from ox brain were estimated by different methods. Under optimal conditions (Na/K = 5) diphenylhydantoin (DPH) at a concentration of 0,1 mM activates Na, K-ATPase from the total SM fraction only in the absence of ouabain, whereas carbamazepine and pyrroxane taken at the same concentrations have no effect on Na, K-ATPase, irrespective of the type of the enzyme assay. DPH seems to compete with ouabain. Under non-optimal ionic conditions (Na/K = 250) all the anticonvulsive substances studied inhibit Na, K-ATPase of the total SM fraction. The mixture of hydrophobic agents (propylene glycol and ethanol) used to dissolve carbamazepine inhibits Na, K-ATPase from the total SM fraction only under non-optimal conditions. The inhibiting effect of the anticonvulsive substances under study on Na, K-ATPase from the purified membrane preparations is maximal at the concentration of 10(-6) M; at higher concentrations the effect is less pronounced.  相似文献   

12.
A method for the assay of Na,K-ATPase activity of unpurified synaptosomal fraction obtained from the microquantities (2--3 mg of fresh tissue) of the rat cerebral cortex is described. This method is based on the fluorimetric determination of ADP formed in the course of ATPase reaction. The method is highly sensitive and may be used to determine the membrane preparations Na,K-ATPase activity with the protein content of 0.05--10.0 microgram per sample.  相似文献   

13.
Placentas of women suffering from pregnancy-induced hypertension (PIH) were found to contain a greater amount of Na,K-ATPase molecules, estimated from anthroyl ouabain binding, than normotensive individuals. Both the microsomal fraction of placental cells and purified Na,K-ATPase showed an increased affinity for the specific inhibitor ouabain which, in the case of the microsomes, bound with a dissociation constant of 0.9 nM as compared with 3.4 nM in the controls. Likewise, the dissociation constant of the ouabain complex with purified Na,K-ATPase was about 3.5 times lower in the hypertensive patients. The differences are apparently caused by a different microenvironment of the ouabain-binding site, as reflected in the quantum yield of bound anthroyl ouabain. If an endogenous digitalis-like factor is present in the body fluids to regulate Na,K-ATPase activity, the present results render its role quite plausible.  相似文献   

14.
Yoon T  Kim M  Lee K 《FEBS letters》2006,580(14):3558-3564
Translationally controlled tumor protein (TCTP) has both extra- and intracellular functions. Our group recently reported that TCTP interacts with Na,K-ATPase and suppresses its activity. Our studies led to the identification of sorting nexin 6 (SNX6) which binds with TCTP as a potential negative regulator of TCTP. SNX6 does not interact directly with any cytoplasmic domains of Na,K-ATPase. However, when overexpressed, it restores the Na,K-ATPase activity suppressed by TCTP. This was confirmed by measurements of purified plasma membrane Na,K-ATPase activity after incubation with recombinant TCTP and SNX6. SNX6 alone has no effect on Na,K-ATPase activity, but activates Na,K-ATPase via inhibition of TCTP. Inhibition of endogenous TCTP by the overexpression of SNX6 or knockdown of TCTP expression by siTCTP increased Na,K-ATPase activity above the basal level. The interaction between SNX6 and TCTP thus appears to regulate Na,K-ATPase activity.  相似文献   

15.
The effect of high concentrations of glucose on Na, K-ATPase activity and the polyol pathway was studied using cultured bovine aortic endothelial cells. Na, K-ATPase activity was expressed as ouabain-sensitive K+ uptake. A significant decrease in Na, K-ATPase activity with an intracellular accumulation of sorbitol was found in confluent endothelial cells incubated with 400 mg/dl glucose for 96 h. However, there was no significant change in the Na, K-ATPase activity or sorbitol content of the cells incubated with 100 mg/dl glucose plus 300 mg/dl mannitol. The decrease in Na, K-ATPase induced by the high glucose concentration was restored by the simultaneous addition of 10(-4) M ponalrestat (ICI 128,436; Statil), an aldose reductase inhibitor. The addition of this agent also significantly reduced the increase in sorbitol induced by high glucose levels. These results suggest that the decrease in Na, K-ATPase activity induced in cultured aortic endothelial cells by high concentrations of glucose may be caused in part by the accumulation of sorbitol.  相似文献   

16.
A microprocedure for the preparation of Na,K-ATPase-containing liposomes with a minimal starting material (200 microgram) of purified Na,K-ATPase is presented. Phosphatidylcholine is added gradually to cholate-solubilized Na,K-ATPase of various concentrations and the lipid-induced decrease in enzyme activity is monitored. After removal of the detergent by dialysis, the transport parameters of the resulting Na,K-ATPase-liposomes are established by a microassay. By relating the transport properties to the Na,K-ATPase activity preset before dialysis, a procedure is developed which allows to prepare standardized Na,K-ATPase-liposomes with predictable transport properties.  相似文献   

17.
The Na,K-ATPase has been only partially purified from nervous tissue, yet it is clear that two forms (and +) of the catalytic subunit are present. is a component subunit of the glial Na,K-ATPase, which has a relatively low affinity for binding cardiac glycosides and + has been identified as a subunit of the Na,K-ATPase which has relatively high affinity for cardiac glycosides. The + form may also be sensitive to indirect modulation by neurotransmitters or hormones. The ratio of + / changes in the nervous system during development, and + appears to be the predominant species in adult neurones. Changes in Na,K-ATPase activity have been associated with several abnormalities in the nervous system, including epilepsy and altered nerve conduction velocity, but a causal relationship has not been definitively established. Although the Na,K-ATPase has a pivotal role in Na+ and K+ transport in the nervous system, a special role for the glial Na,K-ATPase in clearing extracellular K+ remains controversial.  相似文献   

18.
To study the size and structure of the Na,K-pump molecule, the ultrastructure of phospholipid vesicles was examined after incorporation of purified Na,K-ATPase which catalyzes active coupled transport of Na+ and K+ in a ratio close to 3Na/2K. The vesicles were analyzed by thin sectioning and freeze-fracture electron microscopy after reconstitution with different ratios of Na,K-ATPase protein to lipid, and the ultrastructural observations were correlated to the cation transport capacity. The purified Na,K-ATPase reconstituted with phospholipids to form a very uniform population of vesicles. Thin sections of preparations fixed with glutaraldehyde and osmium tetroxide showed vesicles limited by a single membrane which in samples stained with tannic acid appeared triple-layered with a thickness of 70 A. Also, freeze-fracture electron microscopy demonstrated uniform vesicles with diameters in the range of 700-1,100 A and an average value close to 900 A. The vesicle diameter was independent of the amount of protein used for reconstitution. Intramembrane particles appeared only in the vesicle membrane after introduction of Na,K-ATPase and the frequency of intramembrane particles was proportional to the amount of Na,K-ATPase protein used in the reconstitution. The particles were evenly distributed on the inner and the outer leaflet of the vesicle membrane. The diameter of the particles was 90 A and similar to our previous values for the diameter of intramembrane particles in the purified Na,K-ATPase. The capacity for active cation transport in the reconstituted vesicles was proportional to the frequency of intramembrane particles over a range of 0.2-16 particles per vesicle. The data therefore show that active coupled Na,K transport can be carried out by units of Na,K-ATPase which appear as single intramembrane particles with diameters close fo 90 A in the freeze-fracture micrographs.  相似文献   

19.
Highly purified membrane-bound Na,K-ATPase from pig kidney outer medulla was dissolved in the non-ionic detergent C12E8. Chromatography of the dissolved material on a DEAE matrix yielded enzymatical material having a ouabain-binding capacity of 6.9 nmoles per mg protein (measured according to Lowry et al., with bovine serum albumin as standard). This material, which after addition of lipids had the same K+-phosphatase turnover as the membrane-bound enzyme, could consist entirely of live molecules with a molecular weight of 145 kDa, a value close to that expected for αβ-protomers of Na,K-ATPase.  相似文献   

20.
The Na,K-ATPase provides the driving force for many ion transport processes through control of Na(+) and K(+) concentration gradients across the plasma membranes of animal cells. It is composed of two subunits, alpha and beta. In many tissues, predominantly in kidney, it is associated with a small ancillary component, the gamma-subunit that plays a modulatory role. A novel 15-kDa protein, sharing considerable homology to the gamma-subunit and to phospholemman (PLM) was identified in purified Na,K-ATPase preparations from rectal glands of the shark Squalus acanthias, but was absent in pig kidney preparations. This PLM-like protein from shark (PLMS) was found to be a substrate for both PKA and PKC. Antibodies to the Na, K-ATPase alpha-subunit coimmunoprecipitated PLMS. Purified PLMS also coimmunoprecipitated with the alpha-subunit of pig kidney Na, K-ATPase, indicating specific association with different alpha-isoforms. Finally, PLMS and the alpha-subunit were expressed in stoichiometric amounts in rectal gland membrane preparations. Incubation of membrane bound Na,K-ATPase with non-solubilizing concentrations of C(12)E(8) resulted in functional dissociation of PLMS from Na,K-ATPase and increased the hydrolytic activity. The same effects were observed after PKC phosphorylation of Na,K-ATPase membrane preparations. Thus, PLMS may function as a modulator of shark Na,K-ATPase in a way resembling the phospholamban regulation of the Ca-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号