首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diving behavior of 2 breeding Chinstrap penguins (Pygoscelis antarctica) was studied focusing first and primarily on dive bouts rather than dives themselves. Analysis of dive bout organization revealed (1) though there are differences between solitary dives and dive bouts in dive duration and dive depth, the first dives of dive bouts do not differ from solitary dives in the dive parameters, (2) mean dive duration during bout correlates positively to both mean dive depth during bout and mean surface interval during bout, while number of dives during bout negatively correlates to both cost (consumed energy) and duration of a dive cycle during bout. These findings suggest the following possibilities on foraging behavior of penguins: (1) their decision to repeat diving depends on the result of the first dive at a site, and the first dives of bouts would tend to be searching or evaluating dives though they would be also successful foraging dives, (2) they repeat diving at a foraging patch until foraging efficiency decrease to a threshold of diminishing returns.  相似文献   

2.
SUMMER DIVING BEHAVIOR OF MALE WALRUSES IN BRISTOL BAY, ALASKA   总被引:1,自引:0,他引:1  
Pacific walruses ( Odobenus rosmarus divergens ) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1–2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3–9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.  相似文献   

3.
We investigated the diving behaviour, the time allocation of the dive cycle and the behavioural aerobic dive limit (ADL) of platypuses (Ornithorhynchus anatinus) living at a sub-alpine Tasmanian lake. Individual platypuses were equipped with combined data logger-transmitter packages measuring dive depth. Mean dive duration was 31.3 s with 72% of all dives lasting between 18 and 40 s. Mean surface duration was 10.1 s. Mean dive depth was 1.28 m with a maximum of 8.77 m. Platypuses performed up to 1600 dives per foraging trip with a mean of 75 dives per hour. ADL was estimated by consideration of post-dive surface intervals vs. dive durations. Only 15% of all dives were found to exceed the estimated ADL of 40 s, indicating mainly aerobic diving in the species. Foraging platypuses followed a model of optimised recovery time, the optimal breathing theory. Total bottom duration or total foraging duration per day is proposed as a useful indicator of foraging efficiency and hence habitat quality in the species.  相似文献   

4.
The diving behaviour of 15 dugongs (Dugong dugon) was documented using time-depth recorders (TDRs), which logged a total of 39,507 dives. The TDRs were deployed on dugongs caught at three study sites in northern Australia: Shark Bay, the Gulf of Carpentaria and Shoalwater Bay. The average time for which the dive data were collected per dugong was 10.4±1.1 (S.E.) days. Overall, these dugongs spent 47% of their daily activities within 1.5 m of the sea surface and 72% less than 3 m from the sea surface. Their mean maximum dive depth was 4.8±0.4 m (S.E.), mean dive duration was 2.7±0.17 min and the number of dives per hour averaged 11.8±1.2. The maximum dive depth recorded was 20.5 m; the maximum dive time in water >1.5 m deep was 12.3 min. The effects of dugong sex, location (study site), time of day and tidal cycle on diving rates (dives per hour), mean maximum dive depths, durations of dives, and time spent ≤1.5 m from the surface were investigated using weighted split-plot analysis of variance. The dugongs exhibited substantial interindividual variation in all dive parameters. The interaction between location and time of day was significant for diving rates, mean maximum dive depths and time spent within 1.5 m of the surface. In all these cases, there was substantial variation among individuals within locations among times of day. Thus, it was the variation among individuals that dominated all other effects. Dives were categorised into five types based on the shape of the time-depth profile. Of these, 67% of dives were interpreted as feeding dives (square and U-shaped), 8% as exploratory dives (V-shaped), 22% as travelling dives (shallow-erratic) and 3% as shallow resting dives. There was systematic variation in the distribution of dive types among the factors examined. Most of this variation was among individuals, but this differed across both time of day and tidal state. Not surprisingly, there was a positive relationship between dive duration and depth and a negative relationship between the number of dives per hour and the time spent within 1.5 m of the surface after a dive.  相似文献   

5.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

6.
Synchronizing behavior with other conspecifics has been suggested as serving a function of increased foraging efficiency. However, the potential costs associated with synchronization of behavior have rarely been studied. Adélie penguins Pygoscelis adeliae sometimes dive synchronously in small open waters surrounded by fast sea ice. We examined the diving behavior of three couples and one trio, which were observed to dive synchronously among groups of 12–47 birds for 1.7–4.5 h duration, with time-depth recorders. Timing of diving and surfacing differed slightly between individuals, and one bird tended to initiate diving earlier than the other. Although the duration of the dives differed only slightly between these birds, the maximum depth of the dives differed to a large extent, with one member tending to dive consistently deeper than the other bird in two out of the four cases. Vertical distances between tagged birds in the undulatory phases of the dives (presumed feeding time) were greater than those in the descent and ascent phases, suggesting independent foraging by group members. Duration of the undulatory phase of the dives tended to be shorter in deeper-diving individuals than the others in the synchronously diving group, suggesting a potential cost of reduced feeding time to synchronize diving and surfacing with other birds. A digital video image relating to the article is available at .  相似文献   

7.
Summary Time-depth recorders were used to study the diving and haulout behavior of six crabeater seals in the marginal. ice edge zone of the Weddell Sea during March 1986. Haulout patterns revealed the seals' clear preference for diving during darkness and hauling out onto sea ice during daylight. Seals did not necessarily haul out every day; individual seals hauled out on 80–100% of days during the study period. Four general dive types were identified: 1) traveling dives, 2) foraging dives, 3) crepuscular foraging dives, and 4) exploratory dives. Nearly continual diving occurred for extended periods (about 16 h) nightly, with one individual diving up to 44 h without interruption. Foraging dives occurring during crepuscular periods were deeper than those made during the darkest hours. The authors suggest that the distinct diel pattern of dive timing and depth may be related to possible predator avoidance behavior by the seals' principal prey, Antarctic Krill.  相似文献   

8.
Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from either: (1) dispersal behavior of prey; or (2) a high energetic cost of foraging.  相似文献   

9.
Nine male walruses were equipped with dive recording devices in Svalbard to investigate walrus diving and haul-out behaviour in late summer. Dive information on 6,018 dives was collected by 3 satellite linked dive recorders. Additional dive information on 7,769 dives was obtained from 3 time depth recorders. The deepest dive recorded was 67 m, but mean depth of foraging dives was 22.5 m. The longest-lasting dive recorded was 24 min, but mean duration of foraging dives was 6 min. The walruses, on average, spent 56 h in the water followed by 20 h hauled out on land.  相似文献   

10.
Knowledge of the diving behaviour of aquatic animals expanded considerably with the invention of time-depth recorders (TDRs) in the 1960s. The large volume of data acquired from TDRs can be analyzed using dive analysis software, however, the application of the software has received relatively little attention. We present an empirical procedure to select optimum values that are critical to obtaining reliable results: the zero-offset correction (ZOC) and the dive threshold. We used dive data from shallow-diving coastal dugongs (Dugong dugon) and visual observations from an independent study to develop and test a procedure that minimizes errors in characterizing dives. We initially corrected the surface level using custom software. We then determined the optimum values for each parameter by classifying dives identified by an open-source dive analysis software into Plausible and Implausible dives based on the duration of dives. The Plausible dives were further classified as Unrecognized dives if they were not identified by the software but were of realistic dive duration. The comparison of these dive types indicated that a ZOC of 1 m and a dive threshold of 0.75 m were the optimum values for our dugong data as they gave the largest number of Plausible dives and smaller numbers of other dive types. Frequency distributions of dive durations from TDRs and independent visual observations supported the selection. Our procedure could be applied to other shallow-diving animals such as coastal dolphins and turtles.  相似文献   

11.
The diving behaviour of the Shy Albatross Diomedea cauta was investigated using archival time-depth recorders (TDRs) and maximum depth gauges (MDGs). Data from birds carrying multiple devices and from diving simulations indicated that the degree of correspondence between TDRs and MDGs varied with the dive depth, duration and frequency, as well as with body placement. The MDGs were the most reliable when the diving depth was greater than 0.5 m, when the diving frequency was low and when gauges were placed on the birds' backs. The TDRs were used during late incubation and early chick rearing in 1994. Fifty-two dives (0.4 m) were recorded during 20 foraging trips of 15 individuals. The majority of dives were within the upper 3 m of the water column and lasted for less than 6 s. However, dives to 7.4 m and others lasting 19 s were recorded. The albatrosses dived between 07.00 h and 22.00 h, with peaks in their diving activity near midday and twilight. Mean diving depth varied throughout the day. with the deepest dives occurring between 10.00 h and 12.00 h. Two dive types were identified on the basis of the relationship between dive depth and descent rate. Plunge dives were short (5 s), and the birds reached a maximum depth of 2.9 m. Swimming dives were both longer and deeper. The characteristics of Shy Albatross plunge dives were similar to those of gannets Morus spp., which are known to be proficient plunge divers. Swimming dives suggest that Shy Albatrosses actively pursue prey underwater.  相似文献   

12.
Leopard seals are conspicuous apex predators in Antarctic coastal ecosystems, yet their foraging ecology is poorly understood. Historically, the ecology of diving vertebrates has been studied using high‐resolution time‐depth records; however, to date such data have not been available for leopard seals. Twenty‐one time‐depth recorders were deployed on seasonally resident adult females in January and February between 2008 and 2014. The average deployment length was 13.65 ± 11.45 d and 40,308 postfilter dives were recorded on 229 foraging trips. Dive durations averaged 2.20 ± 1.23 min. Dives were shallow with 90.1% measuring 30 m or less, and a mean maximum dive depth of 16.60 ± 10.99 m. Four dive types were classified using a k‐means cluster analysis and compared with corresponding animal‐borne video data. Dive activity (number of dives/hour) was concentrated at night, including crepuscular periods. Haul‐out probabilities were highest near midday and were positively correlated with available daylight. Visual observations and comparisons of diving activity between and within years suggest individual‐based differences of foraging effort by time of day. Finally, dive and video data indicate that in addition to at‐surface hunting, benthic searching and facultative scavenging are important foraging strategies for leopard seals near coastal mesopredator breeding colonies.  相似文献   

13.
Dives of five freely diving ringed seals were classified into three-dimentional movement types. Horizontally convoluted dives, defined as dives with angular velocity > 15°/sec, appeared to be foraging or social dives. Simple dives that did not include convoluted movements (angular velocity < 10°/sec) were considered to be exploration dives. Directional dives with nearly linear horizontal travel (horizontal directionality >0.6, on a scale of 0–1) were presumed to be travel dives. Each three-dimensional dive type was observed with similar frequency in dives with two distinct time-depth profiles: V-shaped profiles in which ascent immediately followed descent, and U-shaped profiles in which >7 sec were spent at depth between descent and ascent. The lack of behavioral differences between dives with distinct time-depth profiles suggested that time-depth profiles are not a reliable means of inferring dive behaviors for ringed seals.  相似文献   

14.
To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.  相似文献   

15.
Diving birds have to overcome buoyancy, especially when diving in shallow water. Darters and anhingas (Anhingidae) are specialist shallow-water divers, with adaptations for reducing their buoyancy. Compared to closely-related cormorants (Phalacrocoracidae), darters have fully wettable plumage, smaller air sacs and denser bones. A previous study of darter diving behaviour reported no relationship between dive duration and water depth, contrary to optimal dive models. In this study I provide more extensive observations of African darters Anhinga melanogaster rufa diving in water<5 m deep at two sites. Dive duration increases with water depth at both sites, but the relationship is weak. Dives were longer than dives by cormorants in water of similar depth (max 108 s in water 2.5 m deep), with dives of up to 68 s observed in water<0.5 m deep. Initial dives in a bout were shorter than expected, possibly because their plumage was not fully saturated. Dive efficiency (dive:rest ratio) was 5–6, greater than cormorants (2.7±0.4 for 18 species) and other families of diving birds (average 0.2–4.3). Post-dive recovery periods increased with dive duration, but only slowly, resulting in a strong increase in efficiency with dive duration. All dives are likely to fall within the theoretical anaerobic dive limit. Foraging bouts were short (17.8±4.3 min) compared to cormorants, with birds spending 80±5% of time underwater. Darters take advantage of their low buoyancy to forage efficiently in shallow water, and their slow, stealthy dives are qualitatively different from those of other diving birds. However, they are forced to limit the duration of foraging bouts by increased thermoregulatory costs associated with wettable plumage.  相似文献   

16.
In order to monitor the diving behavior of free-ranging cetaceans, microdataloggers, with pre-programmed release mechanisms, were attached to the dorsal fins of two female harbor porpoises ( Phocoena phocoena ) in Funka Bay, Hokkaido, Japan, in 1994. The two loggers were successfully recovered and a total of 141 h of diving data (depth and water temperature in 4,671 dives) was obtained. Both porpoises dived almost continuously, rarely exhibiting long-term rest at the surface. Maximum dive depths were 98.6 m and 70.8 m, respectively, with more than 70% of diving time at 20 m or less. Most shallow dives were V-shaped with no bottom time. The V-shaped dives were significantly shallower in dive depth and shorter in dive duration than U-shaped dives. Descent rate was not constant during a dive. The deeper the dive depths, the faster the mean descent and initial descent rates. This suggests that porpoises have anticipated the depth to which they will dive before initiating the dive itself.  相似文献   

17.
J. P. Croxall    D. R. Briggs    A. Kato    Y. Naito    Y. Watanuki    T. D. Williams 《Journal of Zoology》1993,230(1):31-47
The pattern and characteristics of diving in two female macaroni penguins Eudyptes chrysolophus was studied, during the brooding period, using continuous-recording time-depth recorders, for a total of I8 days (15 consecutive days) during which the depth, duration and timing of 4876 dives were recorded. Diving in the first 11 days was exclusively diurnal, averaging 244 dives on trips lasting 12 hours. Near the end of the brooding period trips were longer and included diving at night. About half of all trips (except those involving continuous night-time diving) was spent in diving and dive rate averaged 14–25 dives per hour (42 per hour at night). The duration of day time dives varied between trips, and averaged 1.4–1.7 min, with a subsequent surface interval of 0.5–0.9 min. Dive duration was significantly directly related to depth, the latter accounting for 53% of the variation. The average depths of daytime dives were 20–35 m (maximum depth 11 5 m). Dives at night were shorter (average duration 0.9 min) and much shallower (maximum 11 m); depth accounted for only 6% of the variation in duration. Estimates of potential prey capture rates (3–5 krill per dive; one krill every 17–20 s) are made. Daily weight changes in chicks were directly related to number of dives, but not to foraging trip duration nor time spent diving. Of the other species at the same site which live by diving to catch krill, gentoo penguins forage exclusively diurnally, making longer. deeper dives; Antarctic fur seals, which dive to similar depths as macaroni penguins, do so mainly at night.  相似文献   

18.
Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most “natural” state.  相似文献   

19.
Most depth recorders used to study the diving behaviour of polar marine endotherms record depth data at specific time intervals. The length of recording interval can have potentially profound implications for the interpretation of the data. We used data acquired on the diving behaviour of king penguins, Aptenodytes patagonicus, to examine the validity of various analyses routinely conducted on depth data. In our experiments, increasing the sampling interval led to an underestimation of the number of dives performed, an overestimation in mean dive duration and substantial changes in the form of the dive profile. Our analysis indicates that depth data should be recorded at a minimum rate corresponding to 10% of the total dive duration and that conventional dive profile categorization may be inappropriate. Alternatives that are less subjective, and based on curve fits of dive depth versus time, are proposed.  相似文献   

20.
Physical environment and physiological characteristics of marine mammals potentially affect the duration and depth of diving. Härkönen (1987b) proposed a hypothesis that the harbor seal would gain maximum energy by foraging at intermediate depths. To investigate this hypothesis, we studied diving behavior of the Pacific harbor seal (Phoca vitulina ricbardii) during 1995 through 1997 in Monterey Bay, California. Dive depths (n = 13,063 dives) were recorded via time‐depth recorders. Approximately 80% of recorded dives were classified as square dives (type I), which typically were associated with foraging in pinnipeds. Approximately 11% of dives were V dives (type II; 1,402 dives), and the remainder (1,225 dives) were skewed dives (type III and IV). The deepest recorded dive was 481 m, while the greatest duration was 35.25 min. Body mass explained the variability of durations of long dives for females (95th percentile; D95♂=‐5.47 + 0.18 × (mass♀), r2= 0.91, 95% CI for slope = [0.08, 0.28], n= 5) and for males (D95♂=‐5.86 + 0.18 × (mass♀), r2= 0.83, 95% CI for slope = [0.12, 0.24], n= 11). The large proportion of variability in deep dives, however, was explained by body mass only for males (95th percentile; Z95♂=‐363.9 + 6.05 × (mass♀), r2= 0.83, 95% CI for slope = [3.93, 8.17], n= 11) and not for females (Z95,♂=?148.1 +3.11 × (mass♀), r2= 0.58, 95% CI for slope = [‐1.7, 7.9], n= 5, 95% CI for slope= [?1.7, 7.9]). Median depths of presumed foraging dives of harbor seals in the Monterey Bay area were between 5 and 100 m, which were within the range of the previously reported depths for other areas (< 100 m). Our findings generally supported Härkönen's hypothesis that harbor seals forage in the intermediate depth in their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号