首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B P Kopnin  A V Gudkov 《Genetika》1982,18(10):1683-1692
Small chromatin bodies (SCB) were revealed in Djungarian hamster cells resistant to colchicine. They looked like single bodies or like clusters of small particles. SCB were localized both in nucleus and cytoplasm. Similar formations were earlier observed in oocytes of insects with amplified extrachromosomal rDNA genes. DNA in the SCB was able to replicate not only during the S phase but also during other phases of the cell cycle. The restriction analysis showed that in cells with SCB DNA amplified sequences were replicated autonomously too. These data indicate that SCB in colchicine-resistant cells contain amplified genes. Besides, SCB double-minute chromosomes (DMs) were observed in some resistant sublines. In one of them, DMs were the only karyotypic alteration. The relationship between SCB, chromosomal homogeneously staining regions (HSRs) and DMs was studied. Single SCB and DMs appeared at the early stage of the development of colchicine-resistance (the level of drug resistance is 16-22). Selection of variants 170-220-fold resistant to colchicine was usually accompanied by the decrease in the cell number with SCB and DMs and by the increase in the amount of cells containing the chromosomes with HSRs. During the further enhancement of drug resistance (700-750), some decrease in the number of cells with HSRs and the appearance of the great number of cells containing large groups of SCB were found. The loss of colchicine-resistance observed during cultivation in colchicine free medium was accompanied by the disappearance of HSRs, emergence of SCB and DMs and further elimination of SCB and DMs from cells. The quantity of autonomously replicating amplified DNA fragments after digestive by HindIII was increased with the enhancement of SCB number in cultures.  相似文献   

2.
Earlier we have found that the development of resistance to colchicine in mammalian cells in vitro is due to gene amplification leading to decreased plasma membrane permeability to the selective agent and some other unrelated drugs. By a stepwise self-renaturation procedure followed by chromatography on hydroxyapatite we isolated the fraction of middle-repeated sequences (DNAc0t = 10-250) enriched in amplified DNA from the DNA of colchicine-resistant Djungarian hamster cell line. Blotting-hybridization with [32P]DNAc0t = 10-250 performed in the presence of the excess of unlabelled DNA from wild type cells reveals amplified sequences in resistant cell lines. The comparison of DNAs from cell lines resistant to colchicine, adriablastin and actinomycin D showed that common but not identical DNA sequences are amplified in these cases. In situ hybridization with [3H]DNAc0t = 10-250 indicates that amplified sequences are located in the long homogeneously staining regions (HSRs) of the marker chromosomes. These results suggest that DNAc0t = 10-250 may be used for screening of recombinant molecules containing amplified sequences.  相似文献   

3.
Gudkov  A. V.  Massino  J. S.  Chernova  O. B.  Kopnin  B. P. 《Chromosoma》1985,92(1):16-24
By multistep selection a set of clones and sublines possessing different levels of resistance to colchicine or adriablastin was obtained from the SV40-transformed Djungarian hamster cell lines, DM-15 and DMcap. Resistance to both colchicine and adriablastin is associated with an alteration of plasma membrane permeability leading to a decreased uptake of various drugs (3H-colchicine, 3H-cytochalasin B, 3H-actinomycin D, 3H-puromycin, 3H-vinblastine, 14C-chloramphenicol). The DNA of cells highly resistant to cholchicine can transmit resistance only to low dosages of the drug. Comparison of DNAs from wild-type and resistant cells digested by restriction endonucleases revealed new classes of repeated DNA sequences in resistant cell lines. The degree of DNA repetition was correlated with the level of drug resistance. The repeated DNA sequences evidently represent parts of the genome that are amplified in resistant cells. The size of the amplified sequences is 200–250 kilobase pairs (kb). Cell lines highly resistant to colchicine contain amplified DNA, which like mitochondrial DNA replicate asynchronously with the main portion of the cellular DNA and related but not identical DNA sequences are amplified in independent cell lines selected for resistance to colchicine, adriablastin, and actinomycin D. These cell lines display similar patterns of alterations of plasma membrane permeability. The amplified DNA sequences may contain a gene or genes the overexpression of which leads to change in plasma membrane permeability and a development of resistance to various drugs.  相似文献   

4.
Kopnin  B. P.  Massino  J. S.  Gudkov  A. V. 《Chromosoma》1985,92(1):25-36
Chromosomal analysis of 26 Djungarian hamster cell lines obtained from 11 independent clones and possessing different levels of resistance to colchicine or adriablastin as a consequence of gene amplification revealed regular patterns in the karyotypic changes that accompanied the development of drug resistance. Usually the sequence of karyotypic changes was as follows: first an additional chromosome 4 appeared; then single unpaired small chromatin bodies (SCBs) arose; later in the middle part of the long arm of one of three chromosomes 4 long homogeneously staining regions (HSRs) and double minute chromosomes (DMs) were formed; and finally in the most resistant variants large clusters of SCBs appeared. The emergence of the clusters of the SCBs correlated well with the occurrence of autonomously replicating, amplified DNA sequences. In contrast to DNA of the HSRs the DNA of the SCBs could replicate outside the S-phase of the cell cycle. When kept in a non-selective medium, the cells gradually lost their resistance to colchicine: 1%–4% of the cells lost the capacity to form colonies in the selective medium independently of the pattern of location in them of amplified genes (in chromosomal HSRs, SCBs, or DMs). Loss of drug resistance was accompanied by disappearance of the chromosomal HSRs, SCBs, and DMs. Chromosomal analysis of the set of methotrexate-resistant Djungarian hamster cell lines indicated the following karyotypic evolution: first the additional material on the distal part of one of two chromosomes 3 appeared; then the light HSRs were formed on the distal part of one of two chromosomes 4; later clusters of SCBs and HSRs arose on the distal part of the short arm of chromosome 3. Probably the amplification of different genes is characterized by specific patterns of karyotypic alterations.  相似文献   

5.
Resistance of Djungarian hamster cells to colchicine and adriablastin is connected with gene amplification and decreased plasma membrane permeability for cytostatic drugs. Overproduction of protein (mol. weight about 22 Kd and pI about 5.7) was identified in colchicine- and adriablastin-resistant cell lines by means of two-dimensional gel electrophoresis. Obviously, the amplification of this protein genes leads to the changes in plasma membrane permeability and to the development of drug resistance.  相似文献   

6.
B P Kopnin  A V Godkov 《Genetika》1982,18(9):1513-1523
The series of sublines 170-750 times more resistant to colchicine were obtained from 10 independent clones of Djungarian hamster cells possessing 16-22-fold resistance to the drug. From each clone, several sublines with different levels of colchicine-resistance were developed. The drug resistance was unstable. 2,7-4,0% of cells per population doubling lost resistance to selective dosages of colchicine. The loss of resistance was stepwise. The chromosomes stained by trypsin G-banding technique were studied in 17 sublines. 15 sublines derived from 9 independent clones contained chromosomes with long homogeneously staining regions (HSRs). These were, as a rule, primarily localized in the long arm of chromosome 4. During cultivation, HSRs were transferred from chromosome 4 into other chromosomes. Evidently, transposition of HSRs was due to translocations of different chromosomes of HSRs in the chromosome 4 and to subsequent breakages of the resulting dicentrics within HSRs. A great number of different chromosomal rearrangements was also found in the cells containing HSRs. Possibly, formation of HSR leads to destabilization of the karyotype and to the variability of the genome. The length of HSRs varied in different cells of each subline. The levels of colchicine-resistance in different sublines did not correlate with the average length of HSRs in their cells. The lack of connection between the lengths of HSRs and the levels of drug resistance as well as the existence of highly resistant sublines with gene amplification, but without HSRs, suggest that amplified genes are localized in Djungarian hamster colchicine-resistant cells both in chromosomes and extrachromosomally.  相似文献   

7.
B P Kopnin  J J Lukas 《Genetika》1982,18(8):1320-1325
Two new Djungarian hamster cell lines which are resistant to chloramphenicol (CAP) are described. The clonal DMCAP subline was obtained by incubation of HPRT-deficient DM-15 cells for 6 months in the medium containing 50 micron/ml of CAP. Resistance to CAP is determined in DMCAP cells by the cytoplasm: cytoplasts from these cells could transmit resistance to CAP into sensitive cells, such as L or DMCH-2/1 cells by hybridization. However, after transplantation of DMCAP nuclei into L cytoplasts, the resulting hybrid cells lost resistance to CAP to a great extent. Using the capacity of DMCAP cytoplasts to transfer CAP-resistance, we obtained a line of hybrids (cyt. DMCAP X DMCH-2/1) which was resistant to 8-azaguanine, CAP and colchicine. As in the original DMCH-2/1 cell line, colchicine-resistance in the cybrid line appeared to be associated with gene amplification. Thus, chromosomal analysis showed that the karyotype of the hybrids was identical to that of DMCH-2/1 cells. Both contained marker chromosomes with homogeneously staining regions (HSRs) and, during incubation in the colchicine-free medium, lost resistance to colchicine. The loss of resistance was accompanied by a decrease in the number of cells containing chromosomes with HSRs and an increase in the number with double minutes (DMs). Many cells containing small chromatin bodies in their cytoplasm also appeared. These chromatin bodies may be DMs lost from the nucleus during mitosis. These new sublines with cytoplasmic and nuclear genetic markers may be useful in the further study of cytoplasmic-nuclear interactions, particularly, in the analysis of possible activities of the DNA fragments which appear in the cytoplasm during reversion to colchicine sensitivity.  相似文献   

8.
Independent colchicine-resistant (CHR) mutants of Chinese hamster ovary cells displaying reduced permeability to colchicine have been isolated. A distinguishing feature of these membrane-altered mutants is their pleiotropic cross-resistance to a variety of unrelated compounds. Genetic characterization of the CHR lines indicate that colchicine resistance and cross-resistance to other drugs are of a dominant nature in somatic cell hybrids. Revertants of CHR have been isolated which display decreased resistance to colchicine and a corresponding decrease in resistance to other drugs. These results strongly suggest that colchicine resistance and the pleiotropic cross-resistance are the result of the same mutation(s). Biochemical studies indicate that although colchicine is transported into our cells by passive diffusion, no major alterations in the membrane lipids could be detected in mutant cells. However, there appears to be an energy-dependent process in these cells which actively maintains a permeability barrier against colchicine and other drugs. The CHR cells might be altered in this process. A new glycoprotein has been identified in mutant cell membranes which is not present in parental cells, and is greatly reduced in revertant cells. A model for colchicine-resistance is proposed which suggests that certain membrane proteins such as the new glycoprotein of CHR cells, are modulators of membrane fluidity (mmf proteins) whose molecular conformation regulates membrane permeability to a variety of compounds and that the CHR mutants are altered in their mmf proteins. The possible importance of the CHR cells as models for investigating aspects of chemotherapy related to drug resistance is discussed.  相似文献   

9.
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.  相似文献   

10.
Two independently selected series of rat hepatoma cell lines resistant to the drug deoxycoformycin (dCF) were analyzed karyotypically. Several forms of homogeneously staining regions (HSRs) were present on metaphase chromosomes of these cells. In some instances HSRs comprised nearly an entire chromosome, which are among the largest chromosomes in the karyotype. Stable resistance to dCF is acquired in rat cells by overproduction of the enzyme adenosine deaminase (ADA) as a result of amplification of ADA gene sequences. We have localized the amplified ADA gene sequences to HSRs on metaphase chromosomes from both series of dCF-resistant cell lines by in situ hybridization. Based upon the number of ADA gene sequences present and the lengths of the HSRs, we have estimated the size of the amplified unit to range from 450 to 1,000 kb.  相似文献   

11.
A high resolution analysis of G-band pattern of normal and aberrant chromosome 1 bearing two linked insertions of homogeneously staining regions (HSRs) in the house mouse (Mus musculus musculus) reveals an inverted pattern of the euchromatic region between the HSRs. On the basis of this analysis, a hypothesis on the causes for appearance of the aberrant chromosome was put forward: the double insertion is a result of inversion of the chromosome 1 of Mus musculus domesticus bearing a single long insertion. The proximal breakpoint is localized inside the HSR and the distal one--between subbands E3 and E4. From the point of view of these data, new symbols for the aberrations are proposed: Ls (HSR, 1C5) 1Icg--for the proximal insertion, Is(HSR, 1D)21cg--for the distal one, In (1) 1Icg--for the inverted region, including the bands D, E1-E3 and the insertion Is(HSR 1D)21cg.  相似文献   

12.
Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane.  相似文献   

13.
The P388rm and P388rx cell lines resistant to antracycline antibiotics were obtained as a result of chemotherapy of mice bearing P388 leukemia, by means of increasing dosages of rubomycin and ruboxyl, respectively. These cell lines possessed cross-resistance to vinblastine, vincristine, colchicine, actinomycin D and some other drugs. Multidrug resistance (MDR) of P388rm and P388rx is due to decreased uptake of different cytotoxic compounds by the cells. Development of resistance to rubomycin and ruboxyl was accompanied by the appearance of additional chromosomal structures--long homogeneously staining regions (HSRs), double minute chromosomes and others usually containing amplified DNA sequences. Southern blot-hybridization with cloned DNA fragments amplified in Djungarian and Chinese hamster cell lines having MDR has revealed in P388rm and P388rx cells approximately 50-fold amplification of mdr and pC52 genes. Thus, in mouse leukemia cells which acquired MDR in vivo, as a result of chemotherapy, amplification is observed of the same genes that undergo amplification during selection of cell cultures for MDR in vitro.  相似文献   

14.
The intrinsic organization of the plasma membrane differs in normal and transformed cells. With the technique of freeze fracture and electron microscopy contact inhibited 3T3 cells have been shown to contain aggregated plasma membrane intramembranous particles, while transformed cells demonstrate a uniform particle distribution. The distribution of intramembrous particles in transformed cells can be affected by colchicine or vinblastine which induces a dose- and time-dependent particle aggregation. These observations suggest that microtubules and other membrane-associated colchicine-sensitive proteins probably influence the distribution of intrinsic membrane proteins and intramembranous particles in nucleated mammalian cells. An aggregated particle distribution has been observed in 3T3 cells or colchicine-treated transformed cells frozen in media, phosphate-buffered saline or following brief exposure to glycerol, sucrose or dimethyl sulfoxide containing solutions, independent of whether specimens were rapidly frozen from 37 degrees C, room temperature or 4 degrees C incubations. Cells briefly stabilized in 1% formaldehyde yields similar patterns of particle distribution as cells rapidly frozen in media or cryoprotectants. Glutaraldehyde fixation of cells, however, appears to alter the fracturing process in these cells, as visualized by an altered fracture face appearance, decreased numbers of particles, and no particle aggregates. Differences in membrane organization between normal and transformed cells have therefore been demonstrated using a series of preparative methods and colchicine and vinblastine have been shown to modulate intramembranous particle distribution in transformed 3T3 cells.  相似文献   

15.
In this report we investigated whether the modulation of drug permeability in Chinese hamster ovary (CHO) cells was an energy-dependent process. We observed that (1) in the absence of glucose, metabolic inhibitors such as cyanide, azide, and dinitrophenol stimulated the uptake of [3H]colchicine and other drug; (2) cyanide-induced stimulation of drug uptake could be prevented by the presence of metabolizable sugars such as glucose and ribose; (3) cyanide-treated cells were fully viable; (4) on the addition of cyanide and glucose the kinetics of drug permeability changes were very rapid. These data are consistent with the hypothesis that an energy-dependent membrane barrier against the uptake of a variety of drugs was operative in CHO cells.The nature of this energy-dependent membrane barrier was examined in colchicine-resistant mutants (CHRC4 and CHRC5 cells) previously characterized as membrane mutants with greatly reduced drug permeability (Ling and Thompson, (1974) J. Cell Physiol. 83, 103–116). The mutants were more refractile to the cyanide-induced stimulation of drug permeability but more sensitive to the glucose prevention cyanide-induction. In the presence of cyadine, the uptake rate of [3H] colchicine by CHRC4 cells increased by about 100-fold and approached a rate similar to that of wild-type cells. These results suggest that the colchicine-resistant mutants may be altered in their energy-dependent modulation of drug permeability.  相似文献   

16.
《The Journal of cell biology》1984,98(5):1777-1787
We examined epithelial cell surface polarity in subconfluent and confluent Madin-Darby canine kidney (MDCK) cells with monoclonal antibodies directed against plasma membrane glycoproteins of 35,000, 50,000, and 60,000 mol wt. The cell surface distribution of these glycoproteins was studied by immunofluorescence and immunoelectron microscopy. At the ultrastructural level, the electron-dense reaction product localizing all three glycoproteins was determined to be uniformly distributed over the apical and basal cell surfaces of subconfluent MDCK cells as well as on the lateral surfaces between contacted cells; however, after formation of a confluent monolayer, these glycoproteins could only be localized on the basal-lateral plasma membrane. The development of cell surface polarity was followed by assessing glycoprotein distribution with immunofluorescence microscopy at selected time intervals during growth of MDCK cells to form a confluent monolayer. These results were correlated with transepithelial electrical resistance measurements of tight junction permeability and it was determined by immunofluorescence that polarized distributions of cell surface glycoproteins were established just after electrical resistance could be detected, but before the development of maximal resistance. Our observations provide evidence that intact tight junctions are required for the establishment of the apical and basal- lateral plasma membrane domains and that development of epithelial cell surface polarity is a continuous process.  相似文献   

17.
Colchicine resistant (CHR) mutants of CHO cells with reduced permeability to colchicine display extensive cross-resistance to a number of apparently unrelated compounds including puromycin, daunomycin, emetine, ethidium bromide and gramicidin D. A positive correlation was observed between the level of cross-resistance and the relative hydrophobicity of these compounds. The mutants also showed increased (collateral) sensitivity to local anaesthetics (procaine, tetracaine, xylocaine and propanolol), steroid hormones (1-dehydrotestosterone, corticosterone and 5beta-pregnan-3,20-dione) and some Triton X compounds. In general, the degree of the pleiotropic response (cross-resistance or collateral sensitivity) correlated with the degree of colchicine resistance in mutant lines. These results are consistent with the pleiotropic phenotype being the result of the same mutation(s) which confer colchicine resistance and support a model for resistance in which the reduced permeability is assumed to be the result of an alteration in the modulation of the fluidity of the surface membrane.  相似文献   

18.
K H Choi  C J Chen  M Kriegler  I B Roninson 《Cell》1988,53(4):519-529
Multidrug resistance in human cells results from increased expression of the mdr1 (P-glycoprotein) gene. Although the same gene is activated in cells selected with different drugs, multidrug-resistant cell lines can be preferentially resistant to their selecting agent. The mdr1 cDNA sequence from vinblastine-selected KB cells, which are uniformly resistant to different lipophilic drugs, was compared with the corresponding sequence from colchicine-selected KB cells preferentially resistant to colchicine. These sequences differ at three positions, resulting in a single amino acid change in P-glycoprotein. These differences result from mutations that occurred during colchicine selection. The appearance of these mutations coincides with the emergence of preferential resistance to colchicine. We have constructed biologically active mdr1 cDNA clones that express either wild-type or mutant P-glycoprotein. Multi-drug-resistant transfectants obtained with the mutant sequence were characterized by increased relative resistance to colchicine compared with transfectants obtained with wild-type sequence. mdr1 mutations are therefore responsible for preferential resistance to colchicine in multidrug-resistant KB cells.  相似文献   

19.
This investigation examines the influence of alpha-toxin (Hla) during USA300 infection of human leukocytes. Survival of an USA300 isogenic deletion mutant of hla (USA300Δhla) in human blood was comparable to the parental wild-type strain and polymorphonuclear leukocyte (PMN) plasma membrane permeability caused by USA300 did not require Hla. Flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) following infection by USA300, USA300Δhla, and USA300Δhla transformed with a plasmid over-expressing Hla (USA300Δhla Comp) demonstrated this toxin plays a significant role inducing plasma membrane permeability of CD14(+), CD3(+), and CD19(+) PBMCs. Rapid plasma membrane permeability independent of Hla was observed for PMNs, CD14(+) and CD19(+) PBMCs following intoxication with USA300 supernatant while the majority of CD3(+) PBMC plasma membrane permeability induced by USA300 required Hla. Addition of recombinant Hla to USA300Δhla supernatant rescued CD3(+) and CD19(+) PBMC plasma membrane permeability generated by USA300 supernatant. An observed delay in plasma membrane permeability caused by Hla in conjunction with Annexin V binding and ApoBrdU Tunel assays examining PBMCs intoxicated with recombinant Hla or infected with USA300, USA300Δhla, USA300Δhla Comp, and USA300ΔsaeR/S suggest Hla induces programmed cell death of monocytes, B cells, and T cells that results in plasma membrane permeability. Together these findings underscore the importance of Hla during S. aureus infection of human tissue and specifically demonstrate Hla activity during USA300 infection triggers programmed cell death of human monocytes, T cells and B cells that leads to plasma membrane permeability.  相似文献   

20.
In the first paper of this series (Bennett et al., 1984), light-microscope radioautographic studies showed that colchicine or vinblastine inhibited intracellular migration of glycoproteins out of the Golgi region in a variety of cell types. In the present work, the effects of these drugs on migration of membrane glycoproteins have been examined at the ultrastructural level in duodenal villous columnar cells and hepatocytes. Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for radioautography. In duodenal villous columnar cells, 3H-fucose labeling of the apical plasma membrane was reduced by 51% after colchicine and by 67% after vinblastine treatment; but there was little change in labeling of the lateral plasma membrane. Labeling of the Golgi apparatus increased. This suggests that labeled glycoproteins destined for the apical plasma membrane were inhibited from leaving the Golgi region, while migration to the lateral plasma membrane was not impaired. In hepatocytes, labeling of the sinusoidal plasma membrane was reduced by 83% after colchicine and by 85% after vinblastine treatment. Labeling of the lateral plasma membrane also decreased, although not so dramatically. Labeling of the Golgi apparatus and neighboring secretory vesicles increased. This indicates that the drugs inhibited migration of membrane glycoproteins from the Golgi region to the various portions of the plasma membrane. Accumulation of secretory vesicles at the sinusoidal front suggests that exocytosis may also have been partially inhibited. In both cell types, microtubules almost completely disappeared after drug treatment. Microtubules may, therefore, be necessary for intracellular transport of membrane glycoproteins, although the possibility of a direct action of these drugs on Golgi or plasma membranes must also be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号