首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sequence similarity among known potassium channels indicates the voltage-gated potassium channels consist of two modules: the N-terminal portion of the channel up to and including transmembrane segment S4, called in this paper the 'sensor' module, and the C-terminal portion from transmembrane segment S5 onwards, called the 'pore' module. We investigated the functional role of these modules by constructing chimeric channels which combine the 'sensor' from one native voltage-gated channel, mKv1.1, with the 'pore' from another, Shaker H4, and vice versa. Functional studies of the wild type and chimeric channels show that these modules can operate outside their native context. Each channel has a unique conductance-voltage relation. Channels incorporating the mKv1.1 sensor module have similar rates of activation while channels having the Shaker pore module show similar rates of deactivation. This observation suggests the mKv1.1 sensor module limits activation and the Shaker pore module determines deactivation. We propose a model that explains the observed equilibrium and kinetic properties of the chimeric constructs in terms of the characteristics of the native modules and a novel type of intrasubunit cooperativity. The properties ascribed to the modules are the same whether the modules function in their native context or have been assembled into a chimera.  相似文献   

4.
5.
The translation of poliovirus RNA in rabbit reticulocyte lysate was examined. Translation of poliovirus RNA in this cell-free system resulted in an electrophoretic profile of poliovirus-specific proteins distinct from that observed in vivo or after translation in poliovirus-infected HeLa cell extract. A group of proteins derived from the P3 region of the polyprotein was identified by immunoprecipitation, time course, and N-formyl-[35S]methionine labeling studies to be the product of the initiation of protein synthesis at an internal site(s) located within the 3'-proximal RNA sequences. Utilization of this internal initiation site(s) on poliovirus RNA was abolished when reticulocyte lysate was supplemented with poliovirus-infected HeLa cell extract. Authentic P1-1a was also synthesized in reticulocyte lysate, indicating that correct 5'-proximal initiation of translation occurs in that system. We conclude that the deficiency of a component(s) of the reticulocyte lysate necessary for 5'-proximal initiation of poliovirus protein synthesis resulted in the ability of ribosomes to initiate translation on internal sequences. This aberrant initiation could be corrected by factors present in the HeLa cell extract. Apparently, under certain conditions, ribosomes are capable of recognizing internal sequences as authentic initiation sites.  相似文献   

6.
Using derivatives of oligoribonucleotides bearing an active group at the 5'- or 3'-end, the affinity modification of Escherichia coli ribosomes has been investigated in model complexes imitating various steps of initiation and elongation with a different extent of approximation to the real protein-synthesizing system. The protein environment of the ribosome decoding site is determined. The S3, S4, S9, L2, L7/L12 proteins belong to the 5'-region of the decoding site, and the S5, S7, S9, L1, L16 proteins to the 3'-region. In the process of translation the template moves along the external side of the 30 S subunit, from the L1 ridge to the L7/L12 stalk. The structural arrangement of the decoding site or its nearest environment depends on the functional state of ribosomes in the process of translation.  相似文献   

7.
The dopamine D2 receptor belongs to the serpentine superfamily of receptors, which have seven transmembrane segments and activate G proteins. D2 receptors are known to be linked, through Galpha(o)- and Galpha(i)-containing G proteins, to several signaling pathways in neuronal and secretory cells, including inhibition of adenylyl cyclase and high voltage-activated Ca2+ channels (HVA-CCs). The dopamine D2 receptor exists in two alternatively spliced isoforms, "long" and "short" (D2L, and D2S, respectively), which have identical ligand binding sites but differ by 29 amino acids in the third intracellular loop, the proposed site for G protein interaction. This has led to the speculation that the two isoforms may interact with different G proteins. We have transfected the AtT20 cell line with either D2L (KCL line) or D2S (KCS line) to facilitate experimentation on the individual isoforms. Both lines show dopamine agonist-dependent inhibition of Q-type HVA-CCs. We combined G protein antisense knock-down studies with multiwavelength fluorescence video microscopy to measure changes in HVA-CC inhibition to investigate the possibility of differential G protein coupling to this inhibition. The initial, rapid, K+ depolarization-induced increase in intracellular Ca2+ concentration is due to influx through HVA-CCs. Our studies reveal that both D2 isoforms couple to Galpha(o) to partially inhibit this influx. However, D2L also couples to Galpha(i)3, whereas D2S couples to Galpha(i)2. These data support the hypothesis of differential coupling of D2 receptor isoforms to G proteins.  相似文献   

8.
Spermidine and spermine, are endogenous polyamines (PAs) that regulate cell growth and modulate the activity of numerous ion channel proteins. In particular, intracellular PAs are potent blockers of many different cation channels and are responsible for strong suppression of outward K+ current, a phenomenon known as inward rectification characteristic of a major class of KIR K+ channels. We previously described block of heterologously expressed voltage-gated Na+ channels (NaV) of rat muscle by intracellular PAs and PAs have recently been found to modulate excitability of brain neocortical neurons by blocking neuronal NaV channels. In this study, we compared the sensitivity of four different cloned mammalian NaV isoforms to PAs to investigate whether PA block is a common feature of NaV channel pharmacology. We find that outward Na+ current of muscle (NaV1.4), heart (NaV1.5), and neuronal (NaV1.2, NaV1.7) NaV isoforms is blocked by PAs, suggesting that PA metabolism may be linked to modulation of action potential firing in numerous excitable tissues. Interestingly, the cardiac NaV1.5 channel is more sensitive to PA block than other isoforms. Our results also indicate that rapid binding of PAs to blocking sites in the NaV1.4 channel is restricted to access from the cytoplasmic side of the channel, but plasma membrane transport pathways for PA uptake may contribute to long-term NaV channel modulation. PAs may also play a role in drug interactions since spermine attenuates the use-dependent effect of the lidocaine, a typical local anesthetic and anti-arrhythmic drug.  相似文献   

9.
Spermidine and spermine, are endogenous polyamines (PAs) that regulate cell growth and modulate the activity of numerous ion channel proteins. In particular, intracellular PAs are potent blockers of many different cation channels and are responsible for strong suppression of outward K+ current, a phenomenon known as inward rectification characteristic of a major class of KIR K+ channels. We previously described block of heterologously expressed voltage-gated Na+ channels (NaV) of rat muscle by intracellular PAs and PAs have recently been found to modulate excitability of brain neocortical neurons by blocking neuronal NaV channels. In this study, we compared the sensitivity of four different cloned mammalian NaV isoforms to PAs to investigate whether PA block is a common feature of NaV channel pharmacology. We find that outward Na+ current of muscle (NaV1.4), heart (NaV1.5), and neuronal (NaV1.2, NaV1.7) NaV isoforms is blocked by PAs, suggesting that PA metabolism may be linked to modulation of action potential firing in numerous excitable tissues. Interestingly, the cardiac NaV1.5 channel is more sensitive to PA block than other isoforms. Our results also indicate that rapid binding of PAs to blocking sites in the NaV1.4 channel is restricted to access from the cytoplasmic side of the channel, but plasma membrane transport pathways for PA uptake may contribute to long-term NaV channel modulation. PAs may also play a role in drug interactions since spermine attenuates the use-dependent effect of the lidocaine, a typical local anesthetic and anti-arrhythmic drug.  相似文献   

10.
The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels and their modulation by the auxiliary beta1b, beta2e, beta3a, and beta4a subunits were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing human CaV2.1 channels. These calcium channels showed a complex modal gating, which is described in this and the following paper (Fellin, T., S. Luvisetto, M. Spagnolo, and D. Pietrobon. 2004. J. Gen. Physiol. 124:463-474). Here, we report the characterization of two modes of gating of human CaV2.1 channels, the slow mode and the fast mode. A channel in the two gating modes differs in mean closed times and latency to first opening (both longer in the slow mode), in voltage dependence of the open probability (larger depolarizations are necessary to open the channel in the slow mode), in kinetics of inactivation (slower in the slow mode), and voltage dependence of steady-state inactivation (occurring at less negative voltages in the slow mode). CaV2.1 channels containing any of the four beta subtypes can gate in either the slow or the fast mode, with only minor differences in the rate constants of the transitions between closed and open states within each mode. In both modes, CaV2.1 channels display different rates of inactivation and different steady-state inactivation depending on the beta subtype. The type of beta subunit also modulates the relative occurrence of the slow and the fast gating mode of CaV2.1 channels; beta3a promotes the fast mode, whereas beta4a promotes the slow mode. The prevailing mode of gating of CaV2.1 channels lacking a beta subunit is a gating mode in which the channel shows shorter mean open times, longer mean closed times, longer first latency, a much larger fraction of nulls, and activates at more positive voltages than in either the fast or slow mode.  相似文献   

11.
E. coli ribosomal protein L1 is a translational repressor of the synthesis in vitro of both proteins encoded in the L11 operon (L11 and L1). L1 is shown to act at a single target site within the first 160 bases of the bicistronic mRNA, near (or at) the translation initiation site of the L11 cistron. Synthesis of L1 apparently requires translation of the preceding L11 cistron, allowing regulation of the synthesis of both proteins from a single mRNA target site. This observation suggests a sequential translation mechanism that results in the equimolar synthesis rates of the two proteins observed in vivo. It was found that the presence of 23S rRNA, but not 16S rRNA, relieves translational inhibition by L1. L1 presumably recognizes structural features of the mRNA target site that are homologous to the L1-binding site of 23S rRNA. Although previous work indicated that translationally inhibited ribosomal protein mRNA is degraded in vivo, L1 repressor action in the present in vitro system was found not to involve mRNA degradation.  相似文献   

12.
Members of the ClC family of membrane proteins have been found in a variety of species and they can function as Cl- channels or Cl-/H+ antiporters. Three potential ClC genes are present in the Drosophila melanogaster genome. Only one of them shows homology with a branch of the mammalian ClC genes that encode plasma membrane Cl- channels. The remaining two are close to mammalian homologues coding for intracellular ClC proteins. Using RT-PCR we have identified two splice variants showing highest homology (41% residue identity) to the mammalian ClC-2 chloride channel. One splice variant (DmClC-2S) is expressed in the fly head and body and an additional, larger variant (DmClC-2L) is only present in the head. Both putative Drosophila channels conserve key features of the ClC channels cloned so far, including residues conforming the selectivity filter and C-terminus CBS domains. The splice variants differ in a stretch of 127 aa at the intracellular C-terminal portion separating cystathionate beta synthase (CBS) domains. Expression of either Drosophila ClC-2 variant in HEK-293 cells generated inwardly rectifying Cl- currents with similar activation and deactivation characteristics. There was great similarity in functional characteristics between DmClC-2 variants and their mammalian counterpart, save for slower opening kinetics and faster closing rate. As CBS domains are believed to be sites of regulation of channel gating and trafficking, it is suggested that the extra amino acids present between CBS domains in DmClC-2L might endow the channel with a differential response to signals present in the fly cells where it is expressed.  相似文献   

13.
Human P54 and P56 proteins are tetratricopeptide proteins that are encoded by two closely related genes, ISG54 and ISG56. These genes are induced strongly but transiently when cells are treated with interferons or double-stranded RNA or infected with a variety of viruses. We observed that, although double-stranded RNA or Sendai virus infection induced the two genes with similar kinetics, their induction kinetics in response to interferon-beta were quite different. The induction kinetics by virus infection were also different between two cell lines. Functionally the two proteins were similar. Like P56, P54 bound to the translation initiation factor eIF3 and inhibited translation. However, unlike P56, P54 bound to both the "e" and the "c" subunits of eIF3. Consequently, P54 inhibited two functions of eIF3. Like P56, it inhibited the ability of eIF3 to stabilize the eIF2 x GTP x Met-tRNA(i) ternary complex. But in addition, it also inhibited the formation of the 48 S pre-initiation complex between the 40 S ribosomal subunit and the 20 S complex composed of eIF3, ternary complex, eIF4F, and mRNA. Thus, although similar in structure, the human P54 and P56 proteins are induced differently and function differently.  相似文献   

14.
15.
The eukaryotic translation initiation factor eIF4GI binds several proteins and acts as a scaffold to promote preinitiation complex formation on the mRNA molecule (48S). Following mRNA attachment this complex scans along the messenger in a 5' to 3' direction until it locates and recognizes the initiation start codon. By using a combination of retroviral and picornaviral proteases (HIV-2 and L respectively) in the reticulocyte lysate system, we have characterized a 40 amino acid (aa) region of eIF4GI (aa 642-681) that exhibits general RNA-binding properties. Removal of this domain by proteolytic processing followed by translational assays showed virtually no inhibition of internal ribosome entry on the encephalomyocarditis virus, but resulted in drastic impairment of ribosome scanning as demonstrated by studying poliovirus and foot-and-mouth disease virus translation. Based on these findings, we propose that this 40 aa motif of eIF4GI is critical for ribosome scanning.  相似文献   

16.
Mutations in the gene encoding the voltage-gated sodium channel of skeletal muscle (SkMl) have been identified in a group of autosomal dominant diseases, characterized by abnormalities of the sarcolemmal excitability, that include paramyotonia congenita (PC) and hyperkalemic periodic paralysis (HYPP). We previously reported that PC mutations cause in common a slowing of inactivation in the human SkMl sodium channel. In this investigation, we examined the molecular mechanisms responsible for the effects of L1433R, located in D4/S3, on channel gating by creating a series of additional mutations at the 1433 site. Unlike the R1448C mutation, found in D4/S4, which produces its effects largely due to the loss of the positive charge, change of the hydropathy of the side chain rather than charge is the primary factor mediating the effects of L1433R. These two mutations also differ in their effects on recovery from inactivation, conditioned inactivation, and steady state inactivation of the hSkMl channels. We constructed a double mutation containing both L1433R and R1448C. The double mutation closely resembled R1448C with respect to alterations in the kinetics of inactivation during depolarization and voltage dependence, but was indistinguishable from L1433R in the kinetics of recovery from inactivation and steady state inactivation. No additive effects were seen, suggesting that these two segments interact during gating. In addition, we found that these mutations have different effects on the delay of recovery from inactivation and the kinetics of the tail currents, raising a question whether this delay is a reflection of the deactivation process. These results suggest that the S3 and S4 segments play distinct roles in different processes of hSkM1 channel gating: D4/S4 is critical for the deactivation and inactivation of the open channel while D4/S3 has a dominant role in the recovery of inactivated channels. However, these two segments interact during the entry to, and exit from, inactivation states.  相似文献   

17.
In Shaker K(+) channels depolarization displaces outwardly the positively charged residues of the S4 segment. The amount of this displacement is unknown, but large movements of the S4 segment should be constrained by the length and flexibility of the S3-S4 linker. To investigate the role of the S3-S4 linker in the ShakerH4Delta(6-46) (ShakerDelta) K(+) channel activation, we constructed S3-S4 linker deletion mutants. Using macropatches of Xenopus oocytes, we tested three constructs: a deletion mutant with no linker (0 aa linker), a mutant containing a linker 5 amino acids in length, and a 10 amino acid linker mutant. Each of the three mutants tested yielded robust K(+) currents. The half-activation voltage was shifted to the right along the voltage axis, and the shift was +45 mV in the case of the 0 aa linker channel. In the 0 aa linker, mutant deactivation kinetics were sixfold slower than in ShakerDelta. The apparent number of gating charges was 12.6+/-0.6 e(o) in ShakerDelta, 12.7+/-0.5 in 10 aa linker, and 12.3+/-0.9 in 5 aa linker channels, but it was only 5.6+/-0.3 e(o) in the 0 aa linker mutant channel. The maximum probability of opening (P(o)(max)) as measured using noise analysis was not altered by the linker deletions. Activation kinetics were most affected by linker deletions; at 0 mV, the 5 and 0 aa linker channels' activation time constants were 89x and 45x slower than that of the ShakerDelta K(+) channel, respectively. The initial lag of ionic currents when the prepulse was varied from -130 to -60 mV was 0.5, 14, and 2 ms for the 10, 5, and 0 aa linker mutant channels, respectively. These results suggest that: (a) the S4 segment moves only a short distance during activation since an S3-S4 linker consisting of only 5 amino acid residues allows for the total charge displacement to occur, and (b) the length of the S3-S4 linker plays an important role in setting ShakerDelta channel activation and deactivation kinetics.  相似文献   

18.
During mammalian programmed cell death, cleavage of the translation initiation factor 4G proteins (eIF4GI and eIF4GII) by caspase-3 induces the cap-independent synthesis of pro-apoptotic proteins. Apoptosis occurs naturally in the gonad to remove germ cells that are not selected to grow as oocytes and mature into eggs. Here, we describe two major isoforms of Caenorhabditis elegans eIF4G that are derived from a single gene (ifg-1) and their separate roles in germline homeostasis. Full length IFG-1 protein (170 kDa isoform) differs from the shorter isoform (130 kDa) by the inclusion of the N-terminal domain containing the putative eIF4E-binding site required for mRNA cap recognition. Depletion of the cap-associated p170 isoform induced CED-4 expression in oocytes and markedly increased germline apoptotic events, but did not prevent early mitotic germ cell proliferation. Loss of both p170 and p130 suppressed germ cell proliferation and arrested larval development. Evidence suggests that eIF4G isoforms are differentially utilized during oogenesis to regulate germ cell apoptosis. We propose that an alternative mechanism to eIF4G cleavage may be employed in germ cells by changing the availability of the p170 isoform.  相似文献   

19.
The use of several translation initiation codons in a single mRNA, by expressing several proteins from a single gene, contributes to the generation of protein diversity. A small, yet growing, number of mammalian mRNAs initiate translation from a non-AUG codon, in addition to initiating at a downstream in-frame AUG codon. Translation initiation on such mRNAs results in the synthesis of proteins harbouring different amino terminal domains potentially conferring on these isoforms distinct functions. Use of non-AUG codons appears to be governed by several features, including the sequence context and the secondary structure surrounding the codon. Selection of the downstream initiation codon can occur by leaky scanning of the 43S ribosomal subunit, internal entry of ribosome or ribosomal shunting. The biological significance of non-AUG alternative initiation is demonstrated by the different subcellular localisations and/or distinct biological functions of the isoforms translated from the single mRNA as illustrated by the two main angiogenic factor genes encoding the fibroblast growth factor 2 (FGF2) and the vascular endothelial growth factor (VEGF). Consequently, the regulation of alternative initiation of translation might have a crucial role for the biological function of the gene product.  相似文献   

20.
The molecular identities of functional chloride channels in hepatocytes are largely unknown. We examined the ClC-3 chloride channel in rat hepatocytes and found that mRNA for two different isoforms is present. A short form is identical to the previously reported sequence for rat ClC-3, and a long form contains a 176-bp insertion immediately upstream of the translation initiation site. This predicts a 58-amino acid NH(2) terminal insertion. Both long and short form mRNA was expressed in diverse tissues of the rat. Transient transfection of the long form in CHO-K1 cells resulted in currents with an I(-) > B(-) > Cl(-) selectivity sequence, outward rectification, and inactivation at positive voltages. Short form currents had identical ionic selectivity but displayed a more extreme outward rectification and showed no voltage-dependent inactivation. Immunofluorescence and immunoblots localized native ClC-3 preferentially but not exclusively to the canalicular membrane. We have therefore identified a new isoform of rat ClC-3 and shown that expression of both isoforms produces functional channels. In hepatocytes, ClC-3 is located in association with the canalicular membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号