首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cat ovary presents unusually high levels of noradrenaline that change according to the endocrine status of the animal. Their functional meaning remains unknown. The cat ovary innervation, unlike that of other organs receiving noradrenergic innervation, has been poorly characterized on biochemical grounds. We present here a biochemical characterization of the neurotransmitter storage. By using hyperosmotic and isoosmotic gradients evidence is presented that noradrenaline is associated to two different populations of vesicles. In hyperosmomolarity conditions (sucrose gradients) “light” vesicles (density 1.12 g/ml) and “heavy” vesicles (density 1.17 g/ml) appeared. In both vesicles, noradrenaline and dopamine-β-hydroxylase were found. In isoosmotic Percoll gradients distribution of the markers also suggested the presence of two vesicle populations. Light vesicles (density 1.033 g/ml) with high dopamine-β-hydroxylase activity but very low levels of noradrenaline and adenosine triphosphate; [3H]noradrenaline, used as a specific exogenous vesicle marker, was feebly incorporated in this fraction. Heavy vesicles (density 1.041 g/ml) containing high levels of noradrenaline, adenosine triphosphate, low levels of dopamine-β-hydroxylase activity are able to incorporate high amounts of [3H]noradrenaline. In these gradients, Mg2+ activated ATPase activity was present in both vesicle fractions.

Sedimentation analysis by analytical differential centrifugation also disclosed two types of vesicles: large vesicles with a sedimentation coefficient between 348 and 308 and small vesicles with a sedimentation coefficient of 96 . Large vesicles were associated with noradrenaline-β-hydroxylase activity, while small vesicles were associated only with noradrenaline.

In isoosmotic conditions the use of other microsomal markers allowed us to define the degree of contamination of the vesicle fractions. It was found that the noradrenergic heavy vesicles fraction presented under 11% of 5′-nucleotidase activity of the total activity present in the gradient and less than 5% of acid phosphatase, NADH-cytochrome c reductase and monoaminooxidase of the total activities in the gradients.

In isoosmotic conditions the physical properties of presumed vesicles were apparently undisturbed supporting the current morphometric observations. Our results then suggest prevailing roles for each type of vesicle: synthesis for light vesicles, and storage and/or release for heavy ones.  相似文献   


2.
《The Journal of cell biology》1994,127(5):1419-1433
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.  相似文献   

3.
The subcellular particles in axons of the splenic nerve have been studied by centifrugation techniques. By differential centifrugation, five different types of particle could be distinguished and partly separated: noradrenaline-containing particles (noradrenergic vesicles), large and small lysosomes, mitochondria, and microsomal particles. In density gradient centrifugation, only one type of noradrenergic vesicle could he demonstrated. The noradrenergic vesicles and the mitochondria contain ATP. Two proteins (chromogranin A and dopamine beta-hydroxylase) are present in the noradrenergic vesicles.  相似文献   

4.
Goblet cells specialize in producing and secreting mucus with its main component, mucins. An inducible goblet-like cell line was used for the purification of the mucus vesicles stored in these cells by density gradient ultracentrifugation, and their proteome was analyzed by nanoLC-MS and MS/MS. Although the density of these vesicles coincides with others, it was possible to reveal a number of proteins that after immunolocalization on colon tissue and functional analyses were likely to be linked to the MUC2 vesicles. Most of the proteins were associated with the vesicle membrane or their outer surface. The ATP6AP2, previously suggested to be associated with vesicular proton pumps, was colocalized with MUC2 without other V-ATPase proteins and, thus, probably has roles in mucin vesicle function yet to be discovered. FAM62B, known to be a calcium-sensitive protein involved in vesicle fusion, also colocalized with the MUC2 vesicles and is probably involved in unknown ways in the later events of the MUC2 vesicles and their secretion.  相似文献   

5.
Constitutive secretory vesicles carrying heparan sulfate proteoglycan (HSPG) were identified in isolated rat hepatocytes by pulse-chase experiments with [35S]sulfate and purified by velocity-controlled sucrose gradient centrifugation followed by equilibrium density centrifugation in Nycodenz. Using this procedure, the vesicles were separated from plasma membranes, Golgi, trans-Golgi network (TGN), ER, endosomes, lysosomes, transcytotic vesicles, and mitochondria. The diameter of these vesicles was approximately 100-200 nm as determined by electron microscopy. A typical coat structure as described for intra- Golgi transport vesicles or clathrin-coated vesicles could not be seen, and the vesicles were not associated with the coat protein beta-COP. Furthermore, the vesicles appear to represent a low density compartment (1.05-1.06 g/ml). Other constitutively secreted proteins (rat serum albumin, apolipoprotein E, and fibrinogen) could not be detected in purified HSPG-carrying vesicles, but banded in the denser fractions of the Nycodenz gradient. Moreover, during pulse-chase labeling with [35S]methionine, labeled albumin did not appear in the post-TGN vesicle fraction carrying HSPGs. These findings indicate sorting of HSPGs and albumin into different types of constitutive secretory vesicles in hepatocytes. Two proteins were found to be tightly associated with the membranes of the HSPG carrying vesicles: a member of the ADP ribosylation factor family of small guanine nucleotide-binding proteins and an unknown 14-kD peripheral membrane protein (VAPP14). Concerning the secretory pathway, we conclude from these results that ADP ribosylation factor proteins are not only involved in vesicular transport from the ER via the Golgi to the TGN, but also in vesicular transport from the TGN to the plasma membrane.  相似文献   

6.
Two different density gradients are described for the isolation of highly purified fractions of neurosecretory vesicles in isoosmotic solutions (300 mosm/kg) from bovine neurohypophyses. The techniques involve differential centrifugation of neural lobe homogenates followed by density gradient centrifugation on metrizamide-sucrose or Percoll-sucrose gradients. The purified fraction contained 44 and 65 μg vasopressin/mg protein, respectively. Neurosecretory vesicles thus isolated were only slightly contaminated with other subcellular organelles, e.g., mitochondria and lysosomes. These vesicles were highly stable in isotonic sucrose solutions (pH 7.5 and 5.5) even at 37°C for at least 2 h, retaining more than 90% of their hormonal content.  相似文献   

7.
Synaptotagmin IV (Syt IV) is an immediate early gene induced by depolarization in rat PC12 cells and in rat hippocampus. We prepared an antiserum to Syt IV protein. The 46-kDa Syt IV protein is nearly undetectable by western blotting in unstimulated PC12 cells. After depolarization, Syt IV increases rapidly, peaks at 4 h, and decays to near baseline levels by 12 h. Forskolin stimulation also leads to rapid Syt IV protein accumulation. The rate of Syt IV protein synthesis, determined by labeling with radioactive amino acids and immunoprecipitation, is low in unstimulated PC12 cells, but increases over the first 3 h after forskolin stimulation and remains elevated for several hours. Syt IV protein is relatively labile; metabolically labeled Syt IV has a half-life of approximately 2 h in PC12 cells. Sucrose density gradient fractionation and vesicle immunoisolation experiments suggest that Syt IV protein is present in both synaptic-like microvesicles and secretory granules. Vesicles immunoisolated from forskolin-treated PC12 cells with anti-Syt I antibody contain radioactively labeled Syt IV, demonstrating that Syt I and Syt IV colocalize in common vesicles. These results suggest that Syt IV protein, after its stimulation-induced synthesis, is rapidly transported to secretory vesicles where it may transiently modulate the exocytotic machinery.  相似文献   

8.
Both neuronal and endocrine cells contain secretory vesicles that store and release neurotransmitters and peptides. Neuronal cells release their secretory material from both small synaptic vesicles and large dense-core vesicles (LDCVs), whereas endocrine cells release secretory products from LDCVs. Neuronal small synaptic vesicles are known to express three integral membrane proteins: 65,000 calmodulin-binding protein (65-CMBP) (p65), synaptophysin (p38), and SV2. A controversial question surrounding these three proteins is whether they are present in LDCV membranes of endocrine and neuronal cells. Sucrose density centrifugation of adrenal medulla was performed to study and compare the subcellular distribution of two of these small synaptic vesicle proteins (65-CMBP and synaptophysin). Subsequent immunoblotting and 125I-Protein A binding experiments performed on the fractions obtained from sucrose gradients showed that 65-CMBP was present in fractions corresponding to granule membranes and intact chromaffin granules. Similar immunoblotting and 125I-Protein A binding experiments with synaptophysin antibodies showed that this protein was also present in intact granules and granule membrane fractions. However, an additional membrane component, equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with anti-synaptophysin and high 125I-Protein A binding activity. In addition, immunoblotting experiments on purified plasma and granule membranes demonstrated that 65-CMBP was a component of both membranes, whereas synaptophysin was only present in granule membranes. Thus, there appears to be a different subcellular localization between 65-CMBP and synaptophysin in the chromaffin cell.  相似文献   

9.
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.  相似文献   

10.
Maize storage proteins synthesized in oocytes were compartmentalized in membrane vesicles because they were resistant to hydrolysis by protease, unless detergent was present. The site of storage protein deposition within the oocyte was determined by subcellular fractionation. Optimal separation of oocyte membranes and organelles was obtained when EDTA and high concentrations of NaCl were included in the homogenization and gradient buffers. Under these conditions, fractions in sucrose gradients containing a heterogeneous mixture of smooth membranes (presumably endoplasmic reticulum, Golgi apparatus, and plasma membrane, density = 1.10-1.12 g/cm3), mitochondria (densities = 1.14 and 1.16 g/cm3), yolk platelets (density = 1.21 g/cm3), and a dense matrix material (density = 1.22 g/cm3) could be separated. Some zein proteins were recovered in the mixed membrane fraction, but the majority occurred in vesicles sedimenting with yolk platelets and granular material at a density of approximately 1.22 g/cm3. When metrizamide was included in the gradient to increase the density, little of the dense matrix material was isolated, and vesicles containing zein proteins were separated from other oocyte components. These vesicles were similar to protein bodies in maize endosperm because they were of identical density and contained the same group of polypeptides.  相似文献   

11.
Previously, we have shown that the soluble form of brain glutamic acid decarboxylase (GAD) is inhibited by ATP through protein phosphorylation and is activated by calcineurin-mediated protein dephosphorylation (Bao, J., Cheung, W. Y., and Wu, J. Y. (1995) J. Biol. Chem. 270, 6464-6467). Here we report that the membrane-associated form of GAD (MGAD) is greatly activated by ATP, whereas adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP), a non-hydrolyzable ATP analog, has no effect on MGAD activity. ATP activation of MGAD is abolished by conditions that disrupt the proton gradient of synaptic vesicles, e.g. the presence of vesicular proton pump inhibitor, bafilomycin A1, the protonophore carbonyl cyanide m-chorophenylhydrazone or the ionophore gramicidin, indicating that the synaptic vesicle proton gradient is essential in ATP activation of MGAD. Furthermore, direct incorporation of (32)P from [gamma-(32)P]ATP into MGAD has been demonstrated. In addition, MGAD (presumably GAD65, since it is recognized by specific monoclonal antibody, GAD6, as well as specific anti-GAD65) has been reported to be associated with synaptic vesicles. Based on these results, a model linking gamma-aminobutyric acid (GABA) synthesis by MGAD to GABA packaging into synaptic vesicles by proton gradient-mediated GABA transport is presented. Activation of MGAD by phosphorylation appears to be mediated by a vesicular protein kinase that is controlled by the vesicular proton gradient.  相似文献   

12.
A new procedure is described for the preparation of highly purified and stable secretory vesicles from adrenal medulla. Two forms of acetylcholinesterase, a membrane bound form as well as a soluble form, were found within these vesicles. The secretory vesicles, isolated by differential centrifugation, were further purified on a continuous isotonic Percoll? gradient. In this way, secretory vesicles were separated from mitochondrial, microsomal and cell membrane contamination. The secretory vesicles recovered from the gradient contained an average of 2.26 μmol adrenalin/mg protein. On incubation for 30 min at 37°C in media differing in ionic strength, pH, Mg2+ and Ca2+ concentration, the vesicles released less than 20% of total adrenalin. Acetylcholinesterase could hardly be detected in the secretory vesicle fraction when assayed in isotonic media. However, in hypotonic media (<400 mosmol/kg) or in Triton X-100 (0.2% final concentration) acetylcholinesterase activity was markedly higher. During hypotonic treatment or when secretory vesicles were specifically lyzed with 2 mM Mg2+ and 2 mM ATP, adrenalin as well as part of acetylcholinesterase was released from the vesicular content. On polyacrylamide gel electrophoresis this soluble enzyme exhibited the same electrophoretic mobility as the enzyme released into the perfusate from adrenal glands upon stimulation. In addition to the soluble enzyme a membrane bound form of acetylcholinesterase exists within secretory vesicles, which sediments with the secretory vesicle membranes and exhibits a different electrophoretic mobility compared to the soluble enzyme. It is concluded, that the soluble enzyme found within isolated secretory vesicles is secreted via exocytosis, whilst the membrane-bound form is transported to the cell membrane during this process, contributing to the biogenesis of the cell membrane.  相似文献   

13.
Synaptotagmin IV (Syt IV) is a fourth member of the Syt family and has been shown to regulate some forms of memory and learning by analysis of Syt IV null mutant mice (Ferguson, G. D., Anagnostaras, S. G., Silva, A. J., and Herschman, H. R. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5598-5603). However, the involvement of Syt IV protein in vesicular trafficking and even its localization in secretory vesicles are still matters of controversy. Here we present several lines of evidence showing that the Syt IV protein in PC12 cells is normally localized in the Golgi or immature vesicles at the cell periphery and is sorted to fusion-competent mature dense-core vesicles in response to short nerve growth factor (NGF) stimulation. (i) In undifferentiated PC12 cells, Syt IV protein is mainly localized in the Golgi and small amounts are also present at the cell periphery, but according to the results of an immunocytochemical analysis, they do not colocalize with conventional secretory vesicle markers (Syt I, Syt IX, Rab3A, Rab27A, vesicle-associated membrane protein 2, and synaptophysin) at all. By contrast, limited colocalization of Syt IV protein with dense-core vesicle markers is found in the distal parts of the neurites of NGF-differentiated PC12 cells. (ii) Immunoelectron microscopy with highly specific anti-Syt IV antibody revealed that the Syt IV protein in undifferentiated PC12 cells is mainly present on the Golgi membranes and immature secretory vesicles, whereas after NGF stimulation Syt IV protein is also present on the mature dense-core vesicles. (iii) An N-terminal antibody-uptake experiment indicated that Syt IV-containing vesicles in the neurites of NGF-differentiated PC12 cells undergo Ca(2+)-dependent exocytosis, whereas no uptake of the anti-Syt IV-N antibody was observed in undifferentiated PC12 cells. Our results suggest that Syt IV is a stimulus (e.g. NGF)-dependent regulator for exocytosis of dense-core vesicles.  相似文献   

14.
Secretory vesicles of sympathetic neurons and chromaffin granules maintain a pH gradient toward the cytosol (pH 5.5 versus 7.2) promoted by the V-ATPase activity. This gradient of pH is also responsible for the accumulation of amines and Ca2+ because their transporters use H+ as the counter ion. We have recently shown that alkalinization of secretory vesicles slowed down exocytosis, whereas acidification caused the opposite effect. In this paper, we measure the alkalinization of vesicular pH, caused by the V-ATPase inhibitor bafilomycin A1, by total internal reflection fluorescence microscopy in cells overexpressing the enhanced green fluorescent protein-labeled synaptobrevin (VAMP2-EGFP) protein. The disruption of the vesicular gradient of pH caused the leak of Ca2+, measured with fura-2. Fluorimetric measurements, using the dye Oregon green BAPTA-2, showed that bafilomycin directly released Ca2+ from freshly isolated vesicles. The Ca2+ released from vesicles to the cytosol dramatically increased the granule motion of chromaffin- or PC12-derived granules and triggered exocytosis (measured by amperometry). We conclude that the gradient of pH of secretory vesicles might be involved in the homeostatic regulation of cytosolic Ca2+ and in two of the major functions of secretory cells, vesicle motion and exocytosis.  相似文献   

15.
We describe a scheme for the purification of the nonclathrin-coated vesicles that mediate transport of proteins between Golgi cisternae and probably from ER to Golgi. These "Golgi-derived coated vesicles" accumulate when Golgi membranes are incubated with ATP and cytosol in the presence of GTP gamma S, a compound that blocks vesicle fusion. The coated vesicles dissociate from the Golgi cisternae in high salt and can then be purified by employing differential and density gradient centrifugation. Golgi-derived coated vesicles have a putative polypeptide composition that is distinct from both cytosol and Golgi membranes, as well as from that of clathrin-coated vesicles.  相似文献   

16.
The energetics of lipid vesicle-vesicle aggregation in dextran (36,000 mol wt) solutions have been studied with the use of micromechanical experiments. The affinities (free energy reduction per unit area of contact) for vesicle-vesicle aggregation were determined from measurements of the tension induced in an initially flaccid vesicle membrane as it adhered to another vesicle. The experiments involved controlled aggregation of single vesicles by the following procedure: two giant (approximately 20 micron diam) vesicles were selected from a chamber on the microscope stage that contained the vesicle suspension and transferred to a second chamber that contained a dextran (36,000 mol wt) salt solution (120 mM); the vesicles were then maneuvered into position for contact. One vesicle was aspirated with sufficient suction pressure to create a rigid sphere outside the pipette; the other vesicle was allowed to spread over the rigid vesicle surface. The aggregation potential (affinity) was derived from the membrane tension vs. contact area. Vesicles were formed from mixture of egg lecithin (PC) and phosphatidylserine (PS). For vesicles with a PC/PS ratio of 10:1, the affinity showed a linear increase with concentration of dextran; the values were on the order of 10(-1) ergs/cm2 at 10% by weight in grams. Similarly, pure PC vesicle aggregation was characterized by an affinity value of 1.5 X 10(-1) ergs/cm2 in 10% dextran by weight in grams. In 10% by weight in grams solutions of dextran, the free energy potential for vesicle aggregation decreased as the surface charge (PS) was increased; the affinity extrapolated to zero at a PC/PS ratio of 2:1. When adherent vesicle pairs were transferred into a dextran-free buffer, the vesicles did not spontaneously separate. They maintained adhesive contact until forceably separated, after which they would not read here. Thus, it appears that dextran forms a "cross-bridge" between the vesicle surfaces.  相似文献   

17.
A convenient, large-scale method for the isolation of membrane vesicles permeable to specific inorganic ions has been developed. The general principle of this method involves the exchange of Na+ within the vesicles for external Cs+. Vesicles in which this exchange rapidly occurs can be separated on the basis of their density from vesicles in which the exchange occurs slowly (G. P. Hess and J. P. Andrews (1977) Proc. Nat. Acad. Sci. USA74, 482–486). This approach has been adapted to develop a method suitable for the large-scale isolation of vesicles that contain functional acetylcholine receptors from the Electrophorus electricus electroplax. The new procedure involves a discontinuous sucrose gradient for an initial purification of the vescles. This allows the use of a low-speed centrifuge, which has a capacity up to 30 times greater than the Beckman ultracentrifuge previously used. A self-forming CsCl-Percoll gradient and low-speed centrifugation are then used for the isolation of the functional acetylcholine receptor-containing vesicles. The isolation step leads close to the theoretically possible fourfold purification of the vesicles that contain functional receptors. The yield, up to 12 mg membrane protein/centrifugal run, is about 100-fold higher than the yield from the sucrose-CsCl density gradient previously (Hess and Andrews, see above) used. The gradients are self-forming and an equilibrium is reached after centrifugation for only 30 min. In 12 experiments with membrane preparations from 12 different ceis, the functional vesicles had an internal volume of 2.0 ± 0.3 μl/mg vesicle protein and a receptor concentration of 1.2 ± 0.02 μm (1.2 μmol/liter of internal volume). Electron micrographs of these vesicles show an average vesicle radius of 1600 ± 300 Å. From these results, an average of 12 receptor molecules/membrane vesicle is calculated.  相似文献   

18.
Abstract: Synaptic vesicles isolated from electric ray electric organ have been shown previously to contain a 34-kDa protein that binds azido-ATP, azido-AMP, and N -ethylmaleimide. The protein was found to share similarities with the mitochondrial ADP/ATP carrier and assumed to represent the synaptic vesicle nucleotide transporter. Synaptic vesicles were purified by sucrose density gradient centrifugation and subsequent chromatography on Sephacryl S-1000 from both Torpedo electric organ and bovine brain cerebral cortex. They contained ATP-binding proteins of 35 kDa and 34 kDa, respectively. ATP binding was inhibited by AMP. Both proteins were highly enriched after column chromatography of vesicle proteins of AMP-Sepharose. Antibodies were obtained against both proteins. Antibodies against the bovine brain synaptic vesicle protein of 34 kDa bound specifically to the 35-kDa protein of Torpedo vesicles. An N-terminal sequence obtained against the 34-kDa protein of bovine brain synaptic vesicles identified it as glyceraldehyde-3-phosphate dehydrogenase. The previously observed molecular characteristics of the putative vesicular nucleotide transporter in Torpedo fit those of glyceraldehyde-3-phosphate dehydrogenase. We, therefore, suggest that the protein previously identified as putative nucleotide transporter is, in fact, glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

19.
Immunoisolation techniques have led to the purification of apical and basolateral transport vesicles that mediate the delivery of proteins from the trans-Golgi network to the two plasma membrane domains of MDCK cells. We showed previously that these transport vesicles can be formed and released in the presence of ATP from mechanically perforated cells (Bennett, M. K., A. Wandinger-Ness, and K. Simons, 1988. EMBO (Euro. Mol. Biol. Organ.) J. 7:4075-4085). Using virally infected cells, we have monitored the purification of the trans-Golgi derived vesicles by following influenza hemagglutinin or vesicular stomatitis virus (VSV) G protein as apical and basolateral markers, respectively. Equilibrium density gradient centrifugation revealed that hemagglutinin containing vesicles had a slightly lower density than those containing VSV-G protein, indicating that the two fractions were distinct. Antibodies directed against the cytoplasmically exposed domains of the viral spike glycoproteins permitted the resolution of apical and basolateral vesicle fractions. The immunoisolated vesicles contained a subset of the proteins present in the starting fraction. Many of the proteins were sialylated as expected for proteins existing the trans-Golgi network. The two populations of vesicles contained a number of proteins in common, as well as components which were enriched up to 38-fold in one fraction relative to the other. Among the unique components, a number of transmembrane proteins could be identified using Triton X-114 phase partitioning. This work provides evidence that two distinct classes of vesicles are responsible for apical and basolateral protein delivery. Common protein components are suggested to be involved in vesicle budding and fusion steps, while unique components may be required for specific recognition events such as those involved in protein sorting and vesicle targeting.  相似文献   

20.
Lipoprotein particles of the size range of very low density lipoproteins in smooth endoplasmic reticulum, peripheral elements of the Golgi apparatus, and secretory vesicles of the immature Golgi apparatus face are 55 to 80 nm in diameter. Particles in mature secretory vesicles are smaller (45 nm). Concomitant with the change in particle size, the lumina of mature vesicles increase in electron density. A technique to fractionate immature and mature secretory vesicles was based on precipitation of a cupric-ferrocyanide complex (Hatchett's brown) through the action of a NADH-ferricyanide oxido-reductase resistant to glutaraldehyde which is characteristic of the membranes of mature secretory vesicles and of the plasma membrane of liver. Mature secretory vesicle fractions so isolated were enriched in cholesterol and depleted in triglycerides relative to immature vesicles on a phospholipid basis. Lipase activity was present in secretory vesicle fractions of the Golgi apparatus as shown by biochemical analysis and by cytochemistry. Cytochemical studies showed lipase to be present in both mature and immature vesicles but most evident in immature vesicles. The findings suggest that some very low density lipoprotein particles are converted to particles of smaller diameter during transit through Golgi apparatus. A lipase-mediated hydrolysis of triglycerides may relate to the transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号