首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Abstract: Glucocorticoids, cholera toxin and high plating density all increase the activity of tyrosine 3-monooxygenase (TH) in cultured PC12 pheochromocytoma cells. Glucocorticoids increase enzyme activity in cells treated with cholera toxin and in cells grown at high plating density. Glucocorticoids also increase the content of stored catecholamines in the cells. In cells cultured under routine conditions, glucocorticoids primarily increase the stores of dopamine. The addition of ascorbate to the culture medium increases the storage of norepinephrine in both steroid-treated and untreated cells. Incubation of the cells in media containing 56 n M K+ causes the release of the same percentage of stored dopamine from steroid-treated as from untreated cells. Steroid-treated cells contain more dopamine than do untreated cells and therefore, in response to high K+, the steroid-treated cells secrete more dopamine than do untreated cells. We conclude that the activity of tyrosine 3-monooxygenase in PC12 cells can be regulated by several distinct mechanisms; that glucocorticoids cause a coordinate increase in TH activity and in catecholamine storage; that steroids increase the storage of catecholamines in a releasable pool; and that the steroid-induced increase in catecholamine storage may result in increased secretion of catecholamines from steroid-treated cells.  相似文献   

2.
Abstract: Cultured PC12 pheochromocytoma cells were labeled with [3H]gIucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM ). The released complex carbohydrates include chromogranins, dopamine β-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(β l ± 3 )N-ace tylgalactosamine, as well as several mono- and disialyl O -glycosidically-linked oligosaccharides, and the tetra-saccharide AcNeu(α2 ± 3)Gal(β l ± 3)[AcNeu(α2 ± (6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23–68%), heparan sulfate (16–23%), and glycoprotein oligosaccharides (16–54%), which are of the triand tetraantennary and O -glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.  相似文献   

3.
Aquaporins (AQPs) are a family of small, hydrophobic, integral membrane proteins. In mammals, they are expressed in many epithelia and endothelia and function as channels that permit water or small solutes to pass. Although the AQPs reside constitutively at the plasma membrane in most cell types, the presence of AQPs in intracellular organelles such as secretory granules and vesicles has currently been demonstrated. The secretory granules and vesicles contain secretory proteins, migrate to particular locations within the cell close to the plasma membrane and release their contents to the outside. During the process, including exocytosis, regulation of secretory granule or vesicle volume is important. This paper reviews the possible role of AQPs in secretory granules and vesicles.  相似文献   

4.
The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.  相似文献   

5.
ATP, ADP, and adenosine have been found to inhibit acetylcholine-stimulated secretion from isolated cells of bovine adrenal medulla (chromaffin cells). Maximal inhibition is approximately 30% under the conditions studied; half-maximal inhibition occurs at nucleotide concentration in the micromolar range. Cells must be incubated with ATP for approximately 90 s for maximal inhibition, but inhibition by adenosine occurs much faster, an observation suggesting the possibility that ATP and ADP exert their effect after being converted to adenosine. Experiments with cells preloaded with the fluorescent calcium chelator quin 2 indicate that external ATP can diminish the rise in cytosolic Ca2+ concentration that follows stimulation by acetylcholine.  相似文献   

6.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.  相似文献   

7.
Abstract: We sought to investigate whether dexamethasone produces a coordinated, time-dependent effect on all enzymes in the catecholamine biosynthetic pathway in PC12 cells. The levels of mRNAs of tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), and dopamine γ-hydroxylase (DBH) were examined at 0, 6, 12, 24, and 48 h after dexamethasone (5 μ M ) treatment to PC12 cells. The levels of all enzyme mRNAs steadily increased for 24 h, although the increase of AADC mRNA content was slow. The increased mRNA levels of TH and AADC were maintained at 48 h, whereas the level of DBH mRNA was sharply decreased at 48 h. The maximally induced mRNA levels were ∼5.0-, 2.4-, and 7.0-fold higher than the control levels of TH, AADC, and DBH, respectively. The elevation of enzyme activities was detected later than the increase in levels of mRNAs. The maximal activities of TH, AADC, and DBH were reached between 48 and 72 h with 3.6-, 1.8-, and 8.0-fold increases, respectively. Low, but detectable, phenylethanolamine N -methyltransferase (PNMT) activity was observed in PC12 cells, and dexamethasone increased its activity 5.6-fold at 72 h. The PNMT mRNA was easily detected by northern blot analysis after exposure for 24 h to dexamethasone. The data suggest that, in PC12 cells, dexamethasone up-regulates all catecholamine biosynthetic enzyme genes in a parallel fashion.  相似文献   

8.
The previous report that PC12 (pheochromocytoma) cells have a K(+)-induced, as well as a tyramine-induced, catecholamine release mechanism has been confirmed. Selective monoamine oxidase (MAO)-A (clorgyline and moclobemide) and not MAO-B inhibitors (l-deprenyl, AGN 1135, and Ro 16-6491) potentiate the catecholamine-releasing action of tyramine significantly more than that of K+. The potentiation of tyramine-induced [3H]noradrenaline release from PC12 cells by MAO-A inhibitors has been linked to the presence of MAO-A in these cells, for which tyramine and noradrenaline are substrates. In the above respects, it is the PC12 cell that resembles more closely the peripheral adrenergic neuron, rather than the chromaffin cell, which is endowed with MAO-B and lacks the tyramine-releasable pool of catecholamines.  相似文献   

9.
We have examined PC12 cells for the localization of binding sites for vesamicol [l-2-(4-phenylpiperidino) cyclohexanol], a compound that has previously been shown to bind to cholinergic vesicles and to inhibit the uptake of acetylcholine. Initial studies presented in this article demonstrate the existence of a specific, saturable vesamicol binding site in PC12 cells. Subsequent experiments show that these binding sites reside in a membrane population that is distinct from catecholamine-containing compartments with respect to density and antigenic composition. In particular, vesamicol binding compartments have a lower density than catecholaminergic vesicles and, unlike these latter vesicles, do not appear to contain the vesicle-specific proteins synaptophysin and SV2 as part of the same membrane. These results suggest that vesicular transport proteins for acetylcholine and catecholamines are differentially sorted to distinct membrane compartments in PC12 cells.  相似文献   

10.
The precursor pool of dopamine for norepinephrine synthesis was investigated in cultured bovine adrenomedullary chromaffin cells incubated with [14C]tyrosine. Under conditions where the intracellular [14C]tyrosine specific activity was constant and [14C]dopamine synthesis was maximal, [14C]dopamine and [14C]norepinephrine accumulated over time, and the total intracellular dopamine content more than doubled within 120 min. When [14C]norepinephrine synthesis was calculated at different times based on the specific activity of [14C]dopamine, this rate was approximately equal to the rate of [14C]dopamine synthesis and was, thus, inconsistent with the observed dopamine accumulation. However, the rate of [14C]norepinephrine synthesis based on the [14C]tyrosine specific activity accounted for the dopamine accumulation, an observation suggesting that newly synthesized dopamine, i.e., dopamine with a specific activity equivalent to that of its precursor, [14C]tyrosine, is preferentially utilized for norepinephrine synthesis. Further studies showed that the subcellular distribution of [14C]dopamine was identical to that of norepinephrine and epinephrine and that the accumulated [14C]dopamine could be converted to norepinephrine within the chromaffin vesicle if dopamine uptake was blocked. Taken together, these results suggest that a small intravesicular dopamine pool, rapidly replenished by newly synthesized dopamine, serves as the substrate for dopamine beta-hydroxylase. Several mechanisms to account for this observation are discussed.  相似文献   

11.
Secretory vesicles are localized in specific compartments within neurosecretory cells. Morphometric, cytochemical and electrophysiological techniques have allowed the definition of secretory vesicle compartments. These are different pools in which vesicles are in various states of releasability. The transit of vesicles between compartments is not random, but an event controlled and regulated by Ca2+ and the cortical F-actin network. Cortical F-actin disassembly, a Ca2+-dependent event, controls the transit of secretory vesicles from the reserve compartment to the release-ready vesicle pool. Furthermore, the recent development of new technical approaches (patch-clamp membrane capacitance, electrochemical detection of amines with carbon-fibre microelectrodes) has now permitted us to understand the kinetics of single vesicle exocytosis.  相似文献   

12.
The carboxyl methylation of secretory proteins in vivo was investigated in bovine adrenal medullary cells in culture. Chromogranin A, the major intragranular secretory protein in adrenal medullary cells, and other secretory proteins were found to be carboxyl-methylated within secretory vesicles. The in vivo labeling pattern using [methyl-3H]methionine and the in vitro labeling pattern using S-adenosyl-[methyl-14C]methionine of intravesicular secretory proteins were similar. The detection of methylated chromogranin A in mature secretory vesicles required 3-6 h, a time consistent with the synthesis and storage of secretory proteins in this tissue. Carboxyl-methylated chromogranin A was secreted from medullary cells by exocytosis via activation of nicotinic cholinergic receptor and recovered still under the methylated form in the incubation medium. Since protein-carboxyl-methylase is cytosolic, these results suggest that methylation of secretory proteins is a cotranslational phenomenon.  相似文献   

13.
Abstract: The effect of the hydrolysis-resistant GTP analogs, guanosine 5'- O -(3-thiotriphosphate) (GTPγS) and guanylyl imidodiphosphate (GMPPNP), on norepinephrine (NE) secretion from digitonin-permeabilized rat pheochromocytoma cells, PC12, was examined. Although secretion in the presence of saturating Ca2+ (10 μ M ) was not affected by GTP7S or GMPPNP, secretion in the absence of Ca2+ was stimulated by these GTP analogs. Secretion induced by saturating concentrations of GTPγS or GMPPNP was approximately 80% of that induced by 10 μ M Ca2+. Half-maximum stimulation was induced by 30 μ M GTPγS or GMPPNP. Both Ca2+-stimulated and GTPγS-stimulated secretion were ATP dependent and inhibited by N -ethylmaleimide. The GTPγS-stimulated secretion of NE from permeabilized PC12 cells does not appear to result from either the release of Ca2+ or the activation of protein kinase C. Activation of protein kinase C by pretreatment of intact cells with 12- O -tetradecanoyl-phorbol 13-acetate caused a 50% increase in both Ca2+-stimulated and GTP7S-stimulated secretion. Cholera and pertussis toxins did not affect Ca2+-stimulated or GTPγS-stim-ulated NE secretion. Guanosine 5'- O -(2-thiodiphosphate) (GDPβS) and GTP inhibited GTPγS-stimulated secretion but not Ca2+-stimulated secretion. The inability of GDPβS to inhibit Ca2+-stimulated secretion indicates that the process affected by GTPγS is not an essential step in the Ca2+-stimulated pathway.  相似文献   

14.
Highly purified noradrenergic, large, dense-cored vesicles were isolated from bovine sympathetic nerve endings by sucrose-D2O density gradient centrifugation. Their concentration of glycoprotein hexosamine and sialic acid was 6.6 and 3.9 mumol/100 mg lipid-free dry weight, respectively, values which are similar to those previously found in bovine chromaffin granules. However, whereas chromaffin granule glycoproteins are characterized by their high proportion of N-acetylgalactosamine-containing O-glycosidically-linked oligosaccharides (present in the chromogranins), such oligosaccharides accounted for only 17% of those in noradrenergic synaptic vesicle glycoproteins. Fractionation of N-3H-acetylated glycopeptides by sequential lectin affinity chromatography demonstrated that approximately two-thirds of the oligosaccharides were of the tri- and tetraantennary complex type, accompanied by 14% biantennary oligosaccharides and 3% high-mannose oligosaccharides. The vesicles had a relatively low concentration of chondroitin sulfate (less than 5% of that in chromaffin granules) but significant amounts of heparan sulfate (0.4 mumol N-acetylglucosamine/100 mg lipid-free dry weight). No hyaluronic acid was detected. The concentration of ganglioside sialic acid in the noradrenergic vesicles was approximately 1 mumol/100 mg lipid-free dry weight, which is significantly higher than that of a crude membrane mixture from which the vesicles were prepared; the ratio of N-acetyl- to N-glycolylneuraminic acid was 0.8. Several molecular species of gangliosides were detected by thin-layer chromatography, but most of these did not exactly comigrate with bovine brain gangliosides. Cholera toxin binding indicated that approximately half or less of the gangliosides belong to the gangliotetraose series.  相似文献   

15.
GTP-binding proteins act as molecular switches in a variety of membrane-associated processes, including secretion. One group of GTP-binding proteins, 20–30 kDa, is related to the product of the ras proto-oncogene. In Saccharomyces cerevisiae, ras -like GTP-binding proteins regulate vesicular traffic in secretion. The ciliate protist Paramecium tetraurelia contains secretory vesicles (trichocysts) whose protein contents are released by regulated exocytosis. Using [α-32P]GTP and an on-blot assay for GTP-binding, we detected at least seven GTP-binding proteins of low molecular mass (22–31 kDa) in extracts of Paramecium tetraurelia. Subcellular fractions contained characteristic subsets of these seven; cilia were enriched for the smallest (22 kDa). The pattern of GTP-binding proteins was altered in two mutants defective in the formation or discharge of trichocysts. Trichocysts isolated with their surrounding membranes intact contained two minor GTP-binding proteins (23.5 and 29 kDa) and one major GTP-binding protein (23 kDa) that were absent from demembranated trichocysts. This differential localization of GTP-binding proteins suggests functional specialization of specific GTP-binding proteins in ciliary motility and exocytosis.  相似文献   

16.
Summary Ultrastructural and cytochemical studies have been made on secretory granules of B-cells (fibroblast-like cells) in the knee-joint synovium. The secretory granules were membrane-bounded spherical or slightly elongated bodies, 150 to 350 nm (average 230 nm) in diameter and had a homogenous matrix with several cores. These granules were found in B-cells of all animal species examined; they were numerous in mice and rats, and few in guinea pigs, rabbits and man. Ultrastructural and cytochemical examinations revealed that the Golgi apparatus was involved in the formation of the secretory granules. Unlike lysosomes, they showed no acid phosphatase activity. The granule matrix was positively stained by Thiéiy's periodic acid-thiocarbohydrazidesilver proteinate technique, and the cores were digested by protease. These findings suggest that the granule matrix contains mucopolysaccharide(s) and/or glycoprotein(s) and the core material is largely proteinaceous in nature.  相似文献   

17.
获得活体细胞三维图像以观察细胞内分泌囊泡的空间分布有助于细胞分泌机制的研究。三维荧光反卷积显微技术可以为活体细胞观察提供低荧光漂白 ,低毒副作用的快速三维成像。研究了显微成像系统实验测定和理论计算点扩展函数之间的关系 ,并且实验验证了NA 1.6 5物镜条件下 ,理论计算点扩展函数可以较好地反映显微成像系统的特性。然后使用已知物理结构的三维样本对反卷积算法的有效性进行了研究。进而对使用吖啶橙(acridineorange)标记的大鼠胰腺 β细胞分泌囊泡进行观察。结果显示 ,反卷积算法可以有效地去除原始图像中因为焦外光影响产生的模糊 ,处理后图像清晰地显示了细胞内分泌囊泡的空间分布  相似文献   

18.
Histamine activation of H1 receptors stimulates 3H release from cultured bovine adrenal chromaffin cells preloaded with [3H]noradrenaline. The initial (1-min) release induced by a high concentration of histamine was unaffected by the removal of extracellular Ca2+, whereas the more sustained response (10 min) was largely inhibited. In contrast, release induced by nicotine was dependent on extracellular Ca2+ at all times. The protein kinase inhibitor staurosporine inhibited both the initial and sustained (10-min) phases of histamine-induced release (IC50 in the region of 200 nM) but was ineffective against a direct depolarizing stimulus (56 mM K+). In contrast, the calmodulin antagonist trifluoperazine was equally effective against both stimuli. These data indicate that although a staurosporine-sensitive event (perhaps involving protein kinase C) is essential for coupling histamine receptor activation to the release processes, it is not essential for exocytosis itself. A further distinction between histamine- and depolarization-induced release was demonstrated by the differential effect of the guanine nucleotide-binding protein inhibitor pertussis toxin. Pretreatment with pertussis toxin (0.1 microgram/ml for 16 h) enhanced depolarization-induced release by approximately 1.5-fold. This pertussis toxin pretreatment was, however, approximately twofold as effective in potentiating histamine-evoked release. Thus, the characteristics of the histaminergic response are distinct from those of a depolarizing stimulus, perhaps indicating the involvement of different mechanisms in the release process.  相似文献   

19.
To study the role of intracellular pH (pHi) in catecholamine secretion and the regulation of pHi in bovine chromaffin cells, the pH-sensitive fluorescent indicator [2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein] was used to monitor the on-line changes in pHi. The pHi of chromaffin cells at resting state is approximately 7.2. The pHi was manipulated first by incubation of the cells with NH4+, and then the solution was replaced with a NH4(+)-free solution to induce acidification of the cytoplasm. The pHi returned toward the basal pH value after acidification within 5-10 min in the presence of Na+ or Li+, but the pHi stayed acidic when Na(+)-free buffers were used or in the presence of amiloride and its analogues. These results suggest that the pH recovery process after an acid load is due to the Na+/H+ exchange activity in the plasma membrane of the chromaffin cells. The catecholamine secretion evoked by carbachol and Na+ removal was enhanced after the cytoplasm had been made more acidic. It appears that acidic pH favors the occurrence of exocytosis.  相似文献   

20.
The soluble proteins of bovine chromaffin granules can be resolved into about 40 proteins by two-dimensional electrophoresis. Use of several antisera enabled us to characterize most of these proteins with the immune replica technique. An antiserum against dopamine beta-hydroxylase reacted with one protein of Mr 75,000. Met-enkephalin antisera labeled eight proteins of Mr 23,000-14,000. A new method was developed to obtain highly purified chromogranin A for immunization. The antiserum reacted with chromogranin A and several smaller proteins of similar pI. This specific antiserum did not react with a second family of hitherto undescribed proteins, which we propose to call chromogranins B. An antiserum against these proteins was raised. It labeled several proteins ranging in Mr from 100,000 to 24,000 and focusing at pH 5.2. Subcellular fractionation established that chromogranins B are specifically localized in chromaffin granules of several species. They are secreted from the adrenal medulla during cholinergic stimulation. We conclude that apart from dopamine beta-hydroxylase chromaffin granules contain three families of immunologically unrelated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号