首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli MA-159 is deficient in agmatine ureohydrolase. After addition of exogenous arginine, the cellular putrescine content declines immediately and exponentially; however, the spermidine content remains normal for 3 h. The growth rate of such cultures, measured turbidometrically, slows gradually over many hours. Putrescine-depleted cultures grow especially slowly in media of low osmolarity, whereas nondepleted cultures grow at similar and rapid rates in media of either normal or low osmolarity. External osmolarity also affects the ability of various exogenous polyamines to stimulate growth of putrescine-depleted cultures. In medium of normal osmolarity, putrescine and spermidine both allow sustained rapid growth for many hours. In low osmolarity medium, putrescine allows sustained rapid growth, whereas cultures containing spermidine grow more slowly; this result cannot be explained by conversion of putrescine to spermidine, for cultures grown with exogenous putrescine contain smaller spermidine pools than do cultures grown with exogenous spermidine. Spermine greatly stimulates growth in medium of normal osmolarity; however, in medium of low osmolarity, spermine is much less effective and can block the action of putrescine. Several other polyamines have been studied in this system. These results confirm and expand previous reports that polyamines are necessary for growth of E. coli and suggest that putrescine may have a specific function during growth in media of low osmolarity.  相似文献   

2.
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.  相似文献   

3.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

4.
Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (P(i)). To better understand phosphorus movement between the bacteroid and the host plant, P(i) transport was characterized in R. tropici. We observed two P(i) transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The K(m) and V(max) values for the low-affinity system were estimated to be 34 +/- 3 microM P(i) and 118 +/- 8 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively, and the K(m) and V(max) values for the high-affinity system were 0.45 +/- 0.01 microM P(i) and 86 +/- 5 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively. Both systems were inducible by P(i) starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but P(i) transport through both systems was eliminated by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide; the P(i) transport rate was correlated with the intracellular ATP concentration. Also, P(i) movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both P(i) transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.  相似文献   

5.
Cold-osmotic-shocked cells and spheroplasts of Saccharomyces cerevisiae (ATCC 9896) display a biotin uptake system similar to that observed in intact cells. 2-Mercaptoethanol was found to inhibit biotin transport. Cells repressed for biotin uptake by growth in excess biotin (25 ng/ml) possess an energy-dependent transport system that has a K(m) for biotin of 6.6 x 10(-7) M and a V(max) equal to 39 pmol per mg (dry weight) per min. A similar K(m) (6.4 x 10(-7) M) but a considerably higher V(max) (530 pmol per mg (dry weight) per min) was determined for biotin uptake by cells grown in sufficient biotin (0.25 ng/ml). The V(max) rates of biotin uptake by both repressed and derepressed cells were increased approximately 35-fold in the presence of glucose. These yeast cells appear to regulate their biotin uptake by two mechanisms. An exit system provides for immediate adjustments, whereas turnover of the transport system and repression of new synthesis establishes a slower adaptation to changes in the environment. Feedback inhibition was ruled out as a mechanism of regulation of transport.  相似文献   

6.
Shape and dynamics of thermoregulating honey bee clusters   总被引:1,自引:0,他引:1  
Bacterial transport systems are traditionally treated as enzymes exhibiting a saturable binding site giving rise to an apparent K(m)of transport, whereas the maximal rate of transport is regarded equivalent to the V(max)of enzymatic reactions. Thus, the Michaelis-Menten theory is usually applied in the analysis of transport data and K(m)and V(max)are derived from the treatment of data obtained from the rate of transport at varying substrate concentrations. Such an analysis tacitly assumes that the substrate recognition site of the transport system is freely accessible to substrate. However, this is not always the case. In systems endowed with high affinity in the micro M range or those recognizing large substrates or those exhibiting high V(max), the diffusion through the outer membrane may become rate determining, particularly at low external substrate concentrations. In such a situation the dependence of the overall rate of transport (from the medium into the cytoplasm) on the substrate concentration in the medium will no longer follow Michaelis-Menten kinetics. By analysing the deviation of transport data from the corresponding ideal Michaelis-Menten plot we developed a method that allows us to determine diffusion limitation through the outer membrane. The method allows us to find the correct K(m)of the transport system functioning at the inner membrane even under conditions of strong diffusion limitation through the outer membrane. The model was tested and validified with the Escherichia coli binding protein-dependent ABC transporter for maltose. The corresponding systems for sn -glycerol-3-phospate of Escherichia coli and the alpha -cyclodextrin transport of Klebsiella oxitoca were used as test systems.  相似文献   

7.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

8.
The properties of the d-glucose transport system of Zymomonas mobilis were determined by measuring the uptake of nonmetabolizable analogs (2-deoxy-d-glucose and d-xylose) by wild-type cells and the uptake of d-glucose itself by a mutant lacking glucokinase. d-Glucose was transported by a constitutive, stereospecific, carrier-mediated facilitated diffusion system, whereby its intracellular concentration quickly reached a plateau close to but not above the external concentration. d-Xylose was transported by the d-glucose system, as evidenced by inhibition of its uptake by d-glucose. d-Fructose was not an efficient competitive inhibitor of d-glucose uptake, indicating that it has a low affinity for the d-glucose transport system. The apparent K(m) of d-glucose transport was in the range of 5 to 15 mM, with a V(max) of 200 to 300 nmol min mg of protein. The K(m) of Z. mobilis glucokinase (0.25 to 0.4 mM) was 1 order of magnitude lower than the K(m) for d-glucose transport, although the V(max) values for transport and phosphorylation were similar. Thus, glucose transport cannot be expected to be rate limiting at concentrations of extracellular glucose normally used in fermentation processes, which greatly exceed the K(m) for the transport system. The low-affinity, high-velocity, nonconcentrative system for d-glucose transport described here is consistent with the natural occurrence of Z. mobilis in high-sugar environments and with the capacity of Z. mobilis for rapid conversion of glucose to metabolic products with low energetic yield.  相似文献   

9.
Uptake and utilization of glutamic acid by Cryptococcus albidus   总被引:3,自引:2,他引:1       下载免费PDF全文
Cryptococcus albidus utilizes glutamate as a sole carbon source. The kinetics of uptake of this amino acid were studied. l-Glutamic acid was taken up by two saturable systems: a high affinity system with a Michaelis constant (K(m)) of 1.15 x 10(-5) M and a V(max) of 0.049 mumol per mg per h and a low affinity system with a K(m) of 2.5 x 10(-3) M and a V(max) of 3.61 mumol per mg per h. Both systems possessed characteristics of active transport which were dependent on temperature and pH and which required metabolic energy. Uptake was inhibited at 37 C but the temperature-sensitive step was reversible. Chemical fractionation of cells with 5% trichloroacetic acid showed that glutamic acid initially entered a soluble pool which decreased after 1 h as the amino acid was incorporated into the protein and nucleic acid fractions of the yeast. Some of the glutamate was completely oxidized and could be recovered as (14)CO(2). Therefore, the amino acid was also used as an energy source.  相似文献   

10.
Whole cells of Bacillus subtilis transported d-alanine and l-alanine by two different systems. The high-affinity system (K(m) of 1 muM and V(max) of 0.6 to 0.8 nmol/min per mg of protein) was specific for the two stereoisomers of alanine. The low-affinity system (K(m) of 10 muM for l-alanine and 20 muM for d-alanine and glycine) had a V(max) of 5 to 12 nmol/min per mg of protein. This system transported glycine, d-cycloserine, and d-serine, in addition to d- and l-alanine. Azide inhibited the uptake of these amino acids and caused the efflux of d-alanine from preloaded cells. These data suggest that transport of these amino acids is energized by the electron transport chain.  相似文献   

11.
Choline enters brain by saturable transport at the blood-brain barrier (BBB). In separate studies, both sodium-dependent and passive choline transport systems of differing affinity have been reported at brain capillary endothelial cells. In the present study, we re-examined brain choline uptake using the in situ rat brain perfusion technique. Saturable brain choline uptake from perfusion fluid was best described by a model with a single transporter (V:(max) = 2.4-3.1 nmol/min/g; K(m) = 39-42 microM) with an apparent affinity (1/Km)) for choline five to ten-fold greater than previously reported in vivo, but less than neuronal 'high-affinity' brain choline transport (K(m) = 1-5 microM). BBB choline uptake from a sodium-free perfusion fluid using sucrose for osmotic balance was 50% greater than in the presence of sodium suggesting that sodium is not required for transport. Hemicholinium-3 inhibited brain choline uptake with a K(i) (57 +/- 11 microM) greater than that at the neuronal choline system. In summary, BBB choline transport occurs with greater affinity than previously reported, but does not match the properties of the neuronal choline transporter. The V:(max) of this system is appreciable and may provide a mechanism for delivering cationic drugs to brain.  相似文献   

12.
Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two K(m) values for lysine. System I (K(m) approximately 5 x 10(-6) molar; V(max) approximately 180 nanomoles per gram fresh weight per hour) and system II (K(m) approximately 10(-4) molar; V(max) approximately 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for K(i) similar to the respective K(m) values.These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells.  相似文献   

13.
The uptake of [14C]choline by a suspension of exponential-phase Aphanothece halophytica under various conditions has been studied. Salt stress was found to enhance the uptake of choline. The kinetics of choline transport followed the Michaelis-Menten relationship with apparent K(m) values of 272 and 286 microM, maximum rates of transport (V(max)) of 18 and 37 nmol/min/mg protein for unstressed and salt-stressed cells, respectively. Choline uptake under salt stress was significantly reduced in chloramphenicol-treated cells, suggesting that the activation by salt stress occurred via an inducible transport system. This was corroborated by the existence of the periplasmic choline binding protein, whose content was higher in cells grown under salt-stress condition. Exogenously provided choline significantly increased the growth rate of cells grown under salt stress, although less efficiently than glycine betaine. The presence of 1 mM choline in the growth medium conferred tolerance to high salinity on A. halophytica with the maintenance of high growth up to 1.5 M NaCl. The uptake of choline was Na(+)-dependent, sensitive to various metabolic inhibitors as well as thiol-reactive agents. The results of competition studies suggested that N-methyl on one end of molecule and on the other end either an aldehyde, an alcohol or a neutral group were important features for substrate recognition.  相似文献   

14.
Using [(14)C]methylamine as an analogue of ammonium, the kinetics and the energetics of NH(4)(+) transport were studied in the ectomycorrhizal fungus, Paxillus involutus (Batsch) Fr. The apparent half-saturation constant (K(m)) and the maximum uptake rate (V(max)) for the carrier-mediated transport derived from the Eadie-Hofstee transformation were 180 μM and 380 nmol (mg dry wt)(-1) min(-1,) respectively. Both pH dependence and inhibition by protonophores indicate that methylamine transport in P. involutus was dependent on the electrochemical H(+) gradient. Both long-term and short-term uptake experiments were consistent with regulation of ammonium/methylamine transport processes by the presence of an organic nitrogen source. Analysis of methylamine uptake by different P. involutus isolates revealed no obvious trend in the uptake capacities in relation to N deposition at the collection site. Kinetic parameters were determined in P. involutus/Betula pendula (Roth.) axenic association and in detached mycorrhizal roots isolated from forest sites. Enhanced methylamine uptake in the presence of the fungal symbiont was demonstrated. Homogeneous V(max) values were found for axenic and detached mycorrhizas, whereas K(m) values showed greater variations.  相似文献   

15.
S Cayley  M T Record  Jr    B A Lewis 《Journal of bacteriology》1989,171(7):3597-3602
We found that exogenous morpholinopropanesulfonate (MOPS) is concentrated approximately fivefold in the free volume of the cytoplasm of Escherichia coli K-12 (strain MG1665) when grown at high osmolarity (1.1 OsM) in two different media containing 40 mM MOPS. MOPS was not accumulated by E. coli grown in low-osmolarity MOPS-buffered medium or in 1.1 OsM MOPS-buffered medium containing the osmoprotectant glycine betaine. Salmonella typhimurium LT2 did not accumulate MOPS under any condition examined. We infer that accumulation of MOPS by E. coli K-12 is not due to passive equilibration but rather to transport, possibly involving an as yet uncharacterized porter not present in S. typhimurium. Glutamate and MOPS were the only anionic osmolytes we observed by 13C nuclear magnetic resonance in E. coli K-12 grown in MOPS-buffered medium. The increase in positive charge accompanying the increase in the steady-state amount of K+ in cells shifted from low to high external osmolarity appeared to be compensated for by changes in the amounts of putrescine, glutamate, and MOPS. MOPS is not an osmoprotectant, because its accumulation did not increase cell growth rate.  相似文献   

16.
Two different Cd(2+) uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn(2+) uptake system which also takes up Cd(2+) and is induced by Mn(2+) starvation. The calculated K(m) and V(max) are 0.26 microM and 3.6 micromol g of dry cell(-1) min(-1), respectively. Unlike Mn(2+) uptake, which is facilitated by citrate and related tricarboxylic acids, Cd(2+) uptake is weakly inhibited by citrate. Cd(2+) and Mn(2+) are competitive inhibitors of each other, and the affinity of the system for Cd(2+) is higher than that for Mn(2+). The other Cd(2+) uptake system is expressed in Mn(2+)-sufficient cells, and no K(m) can be calculated for it because uptake is nonsaturable. Mn(2+) does not compete for transport through this system, nor does any other tested cation, i.e., Zn(2+), Cu(2+), Co(2+), Mg(2+), Ca(2+), Fe(2+), or Ni(2+). Both systems require energy, since uncouplers completely inhibit their activities. Two Mn(2+)-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn(2+) for growth as the parental strain. Mn(2+) starvation-induced Cd(2+) uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn(2+) or Cd(2+) accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn(2+) and Cd(2+) uptake system.  相似文献   

17.
Putrescine transport in Neurospora is saturable and concentrative in dilute buffers, but in the growth medium putrescine simply equilibrates across the cell membrane. We describe a mutant, puu-1, that can concentrate putrescine from the growth medium because the polyamine transport system has lost its normal sensitivity to Ca2+. The wild type closely resembles the mutant if it is washed with citrate and ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid. The mutant phenotype also appears in the wild type after treatment with cycloheximide. The results suggest that putrescine uptake is normally regulated by an unstable Ca(2+)-binding protein that restricts polyamine uptake. This protein is evidently distinct from the polyamine-binding function for uptake, which is normal in mutant and in cycloheximide-treated wild type cells. The puu-1 mutation, stripping of Ca2+, and cycloheximide treatment all cause an impairment of amino acid transport, indicating that other membrane transport functions rely upon the product of the puu-1+ gene. Preliminary evidence suggests that the putrescine carrier is not the Ca(2+)-sensitive, low-affinity K(+)-transport system, but K+ efflux does accompany putrescine uptake.  相似文献   

18.
1. Explants of spinal cord from 10-day chick embryos maintained for up to 16 days in culture rapidly accumulated gamma-amino[(3)H]butyrate when incubated at 25 degrees C or 36 degrees C in a medium containing 50nm-gamma-aminobutyrate. The mechanism of the uptake process has many of the properties of an active-transport system: it is Na(+)-dependent, temperature-sensitive, inhibited by ouabain, and displays saturation kinetics. The apparent K(m) for gamma-aminobutyrate is 1.7x10(-5)m, and V(max.) is 33pmol/min per g. 2. The rate of accumulation of gamma-amino[(3)H]butyrate in cultures between the ages of 3 and 16 days was remarkably constant and was not related to the morphological maturity of the spinal-cord explants. 3. The present demonstration in spinal-cord explants of an active transport system for gamma-aminobutyrate, already established for non-cultured nervous tissue, means that nervous-tissue culture can provide a convenient model for studying uptake processes in the central nervous system.  相似文献   

19.
Tre character of K+ uptake in anaerobically grown S. typhimurium LT-2 is studied. In the alkaline media with glucose and moderate K+ activity these bacteria uptake K+ in two steps, the first of which has a high rate of K+ uptake, Km 2.1 mM and Vmax 0.44 mM/g. min and is sensitive to the medium osmolarity. Bacteria transfer from the media with high osmolarity to that with low one leads to a decrease of K+ uptake at the first step. The second increase of the medium osmolarity turns on the rapid K+ uptake only at alkaline pH. K+ uptake at the first step is inhibited by DCC and protonophores. In the absence of phosphate in the medium arsenate blocks K+ uptake at the first step, and when phosphate is available arsenate decreases K+ uptake. Valinomycin decreases the rate of K+ uptake. K+ uptake at the first step in S. typhimurium proceeds via Trk-like system which requires for K+ uptake both ATP and delta mu H+.  相似文献   

20.
The active transport of magnesium by cells of Bacillus subtilis strain W23 occurs by a highly specific transport system (Mg(2+) is favored over Mn(2+), Co(2+), or Ca(2+)) that is energy dependent (i.e., glucose is required in minimal medium and the system is inhibited by cyanide and m-chlorophenyl carbonylcyanidehydrazone). The rate of magnesium uptake by log-phase B. subtilis cells follows saturation kinetics with a K(m) of 2.5 x 10(-4) M and a V(max) of 4.4 mumol per min per g (dry weight) at 30 C. Manganese is a competitive inhibitor showing a K(i) of 5 x 10(-4) M. During sporulation the rate of magnesium transport declines. This decline in rate is specific for the magnesium system as the manganese and calcium transport rates increase. The residual magnesium transport function in sporulating cells shows both an altered K(m) and an altered V(max). The magnesium content of late sporulating cells is also lower than that for log-phase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号