首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Filamentous skeletons were liberated from isolated human erythrocyte membranes in Triton X-100, spread on fenestrated carbon films, negatively stained, and viewed intact and unfixed in the transmission electron microscope. Two forms of the skeleton were examined: (a) basic skeletons, stripped of accessory proteins with 1.5 M NaCl so that they contain predominantly polypeptide bands 1, 2, 4.1, and 5; and (b) unstripped skeletons, which also bore accessory proteins such as ankyrin and band 3 and small plaques of residual lipid. Freshly prepared skeletons were highly condensed. Incubation at low ionic strength and in the presence of dithiothreitol for an hour or more caused an expansion of the skeletons, which greatly increased the visibility of their elements. The expansion may reflect the opening of spectrin from a compact to an elongated disposition. Expanded skeletons appeared to be organized as networks of short actin filaments joined by multiple (5-8) spectrin tetramers. In unstripped preparations, globular masses were observed near the centers of the spectrin filaments, probably corresponding to complexes of ankyrin with band 3 oligomers. Some of these globules linked pairs of spectrin filaments. Skeletons prepared with a minimum of perturbation had thickened actin protofilaments, presumably reflecting the presence of accessory proteins. The length of these actin filaments was highly uniform, averaging 33 +/- 5 nm. This is the length of nonmuscle tropomyosin. Since there is almost enough tropomyosin present to saturate the F-actin, our data support the hypothesis that tropomyosin may determine the length of actin protofilaments in the red cell membrane.  相似文献   

2.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

3.
Spectrin is a vital and abundant protein of the cytoskeleton. It has an elongated structure that is made by a chain of so-called spectrin repeats. Each repeat contains three antiparallel alpha-helices that form a coiled-coil structure. Spectrin forms an oligomeric structure that is able to cross-link actin filaments. In red cells, the spectrin/actin meshwork underlying cell membrane is thought to be responsible for special elastic properties of the cell. In order to determine mechanical unfolding properties of the spectrin repeat, we have used single molecule force spectroscopy to study the states of unfolding of an engineered polymeric protein consisting of identical spectrin domains. We demonstrate that the unfolding of spectrin domains can occur in a stepwise fashion during stretching. The force-extension patterns exhibit features that are compatible with the existence of at least one intermediate between the folded and the completely unfolded conformation. Only those polypeptides that still contain multiple intact repeats display intermediates, indicating a stabilisation effect. Precise force spectroscopy measurements on single molecules using engineered protein constructs reveal states and transitions during the mechanical unfolding of spectrin. Single molecule force spectroscopy appears to open a new window for the analysis of transition probabilities between different conformational states.  相似文献   

4.
The intracellular distribution of F-actin and myosin has been examined in mouse peritoneal macrophages by immunofluorescence microscopy. In resting, adherent cells, F-actin was distributed in a fine networklike pattern throughout the cytoplasm. Myosin, in contrast, was distributed in a punctate pattern. After treatment with cytochalasin B (CB), both proteins showed a coarse punctate pattern consistent with a condensation of protein around specific foci. After CB-pretreated cells were exposed to opsonized zymosan particles, immunofluorescent staining for F-actin and myosin showed an increased staining under particle binding sites. Transmission electron microscope (TEM) examination of whole-cell mounts of such preparations revealed a dense zone of filaments beneath the relatively electron-translucent zymosan particles. At sites where particles had detached during processing, these filament-rich areas were more clearly delineated. At such sites dense arrays of filaments that appeared more or less randomly oriented were apparent. The filaments could be decorated with heavy meromyosin, suggesting that they were composed, in part, of F-actin and were therefore identical to the structures giving rise to the immunofluorescence patterns. After viewing CB-treated preparations by whole-mount TEM, we examined the cells by scanning electron microscopy (SEM). Direct SEM comparison of the filament-rich zones seen by TEM showed that these structures resulted from the formation of short lamellipodial protrusions below the site of particle binding. Electron micrographs of thin-sectioned material established that these lamellipodial protrusions were densely packed with microfilaments that were in part associated with the cytoplasmic surface of the plasma membrane. The formation of particle-associated lamellipodia did not appear to represent merely a slower rate of ingestion in the presence of CB, because they formed within minutes of particle contact with the cell membrane and were not followed by particle ingestion even after a 1-h or longer incubation. Furthermore, their formation required cellular energy. These results suggest that cytochalasin B blocks phagocytosis of large particles by affecting the distances over which any putative actomyosin-mediated forces are generated.  相似文献   

5.
We have examined fragments of the filamentous network underlying the human erythrocyte membrane by high-resolution electron microscopy. Networks were released from ghosts by extraction with Triton X-100, freed of extraneous proteins in 1.5 M NaCl, and collected by centrifugation onto a sucrose cushion. These preparations contained primarily protein bands 1 + 2 (spectrin), band 4.1 and band 5 (actin). The networks were partially disassembled by incubation at 37 degrees C in 2 mM NaPi (pH 7), which caused the preferential dissociation of spectrin tetramers to dimers. The fragments so generated were fractionated by gel filtration chromatography and visualized by negative staining with uranyl acetate on fenestrated carbon films. Unit complexes, which sedimented at approximately 40S, contained linear filaments approximately 7-8 nm diam from which several slender and convoluted filaments projected. The linear filaments had a mean length of 52 +/- 17 nm and a serrated profile reminiscent of F-actin. They could be decorated in an arrowhead pattern with S1 fragments of muscle heavy meromyosin which, incidentally, displaced the convoluted filaments. Furthermore, the linear filaments nucleated the polymerization of rabbit muscle G-actin, predominantly but not exclusively from the fast-growing ends. On this basis, we have identified the linear filaments as F-actin; we infer that the convoluted filaments are spectrin. Spectrin molecules were usually attached to actin filaments in clusters that showed a preference for the ends of the F-actin. We also observed free globules up to 15 nm diam, usually associated with three spectrin molecules, which also nucleated actin polymerization; these may be simple junctional complexes of spectrin, actin, and band 4.1. In larger ensembles, spectrin tetramers linked actin filaments and/or globules into irregular arrays. Intact networks were an elaboration of the basic pattern manifested by the fragments. Thus, we have provided ultrastructural evidence that the submembrane skeleton is organized, as widely inferred from less direct information, into short actin filaments linked by multiple tetramers of spectrin clustered at sites of association with band 4.1.  相似文献   

6.
The effect of spectrin on the polymerization of muscle actin has been investigated by hydrodynamic methods and electron microscopy. Spectrin markedly accelerated polymerization of actin. The effect was more easily observed in lower concentrations of KCl (e.g. 24 mM) where spontaneous polymerization was negligibly small. Similarly large acceleration was observed for polymerization in MgCl2 or CaCl2. The rate of polymerization of actin was proportionally increased with the concentration of spectrin added to a fixed concentration of action. The stationary level of specific viscosity also increased with the spectrin concentration, but at larger concentrations it became smaller. The flow birefringence and electron microscope measurements indicated that actin polymers formed under the influence of spectrin were shorter than those of control F-actin filaments. The structural viscosity and electron microscope observations suggested that the interaction between F-actin fibers was not increased by spectrin. These data strongly suggest a seeding role of spectrin in the polymerization of actin. Spectrin accelerates formation of the nuclei for polymerization. The more the nuclei are formed, the larger the number of the grown polymers are and this leads to rapid formation of shorter polymers since the amount of actin is limited. The acceleration activity was found only in freshly prepared spectrin from fresh ghosts taken from freshly drawn blood.  相似文献   

7.
Utrophin, like its homologue dystrophin, forms a link between the actin cytoskeleton and the extracellular matrix. We have used a new method of image analysis to reconstruct actin filaments decorated with the actin-binding domain of utrophin, which contains two calponin homology domains. We find two different modes of binding, with either one or two calponin-homology (CH) domains bound per actin subunit, and these modes are also distinguishable by their very different effects on F-actin rigidity. Both modes involve an extended conformation of the CH domains, as predicted by a previous crystal structure. The separation of these two modes has been largely dependent upon the use of our new approach to reconstruction of helical filaments. When existing information about tropomyosin, myosin, actin-depolymerizing factor, and nebulin is considered, these results suggest that many actin-binding proteins may have multiple binding sites on F-actin. The cell may use the modular CH domains found in the spectrin superfamily of actin-binding proteins to bind actin in manifold ways, allowing for complexity to arise from the interactions of a relatively few simple modules with actin.  相似文献   

8.
Spectrin and protein 4.1 as an actin filament capping complex   总被引:3,自引:0,他引:3  
Spectrin and protein 4.1, when added to G- or F-actin, cause the formation of short filaments, as judged by the appearance of powerful nucleating activity for G-actin polymerisation. F-Actin filaments are rapidly fragmented under physiological solvent conditions. The effect of cytochalasin E on the polymerisation reaction and the extent of reduction in the critical monomer concentration of actin when spectrin and 4.1 are added suggest that these proteins form a capping system for the more slowly growing, or 'pointed' ends of actin filaments. The interaction is not affected by calcium or by 4.9, the remaining constituent of the purified red cell membrane cytoskeleton.  相似文献   

9.
We have demonstrated a differential association between two types of spectrin, from erythrocytes and brain, with two types of intermediate filaments, vimentin filaments and neurofilaments. Electron microscopy showed that erythrocyte spectrin promoted the binding of vimentin filaments to red cell inside-out vesicles via lateral associations with the filaments. In vitro binding studies showed that the association of spectrin with vimentin filaments was apparently saturable, increased with temperature, and could be prevented by heat denaturation of the spectrin. Comparisons were made between erythrocyte and brain spectrin binding to both vimentin filaments and neurofilaments. We found that vimentin filaments bound more erythrocyte spectrin than brain spectrin, while neurofilaments bound more brain spectrin than erythrocyte spectrin. Our results show that both erythroid and nonerythroid spectrins are capable of binding to intermediate filaments and that such associations may be characterized by differential affinities of the various types of spectrin with the several classes of intermediate filaments present in cells. Our results also suggest a role for both erythroid and nonerythroid spectrins in mediating the association of intermediate filaments with plasma membranes or other cytoskeletal elements.  相似文献   

10.
We used high-resolution EM and immunocytochemistry in combination with different specimen preparation techniques to resolve the ultrastructure of the resting platelet cytoskeleton. The periphery of the cytoskeleton, an electron-dense subplasmalemmal region in thin section electron micrographs, is a tightly woven planar sheet composed of a spectrin-rich network whose interstices contain GPIb/IX-actin-binding protein (ABP) complexes. This membrane skeleton connects to a system of curved actin filaments (F-actin) that emanate from a central oval core of F-actin cross-linked by ABP. The predominant interaction of the radial actin filaments with the membrane skeleton is along their sides, and the strongest connection between the membrane skeleton and F-actin is via ABP-GPIb ligands, although there is evidence for spectrin attaching to the ends of the radial actin filaments as well. Since a mechanical separation of the F-actin cores and radial F-actin-GPIb-ABP complexes from the underlying spectrin-rich skeleton leads to the latter's expansion, it follows that the spectrin-based skeleton of the resting cell may be held in a compressed form by interdigitating GPIb/IX complexes which are immobilized by radial F-actin-ABP anchors.  相似文献   

11.
The red cell membrane skeletal network is constructed from actin, spectrin and protein 4.1 in a molar ratio of actin subunits/spectrin heterodimer/protein 4.1 of 2:1:1. This represents saturation of the actin filaments, since incubation with extraneous spectrin and protein 4.1 leads to no binding of additional spectrin, either to the inner surface of ghost membranes or to lipid-free membrane cytoskeletons. Partial extraction of spectrin from the membrane is accompanied by release of actin under all conditions. Regardless of the proportion of spectrin extracted, the molar ratio of spectrin dimers/actin subunits is constant at 1:2. This is not the result of release or cooperative breakdown of whole lattice junctions from the network, for the number of actin filaments, judged by capacity to nucleate polymerisation of added G-actin, remains unchanged even when as much as 60% of the total spectrin has been lost. A similar 1:2:1 stoichiometry characterises the complex formed when G-actin is allowed to polymerise in the presence of varying amounts of spectrin and protein 4.1. When this complex is treated with the depolymerising agent, 1 M guanidine hydrochloride, it breaks down into smaller units of the same stoichiometry. After cross-linking these can be recovered from a gel-filtration column. Complexes prepared starting from G-actin appear to be much more stable than those formed when spectrin and protein 4.1 are bound to F-actin.  相似文献   

12.
Guanine-rich polynucleotides such as poly(dG), oligo(dG)12-18 or poly(rG) were shown to exert a strong inhibitory effect on vimentin filament assembly and also to cause disintegration of preformed filaments in vitro. Gold-labeled oligo(dG)25 was preferentially localized at the physical ends of the aggregation and disaggregation products and at sites along filaments with a basic periodicity of 22.7 nm. Similar effects were observed with heat-denatured eukaryotic nuclear DNA or total rRNA, although these nucleic acids could affect filament formation and structure only at ionic strengths lower than physiological. However, whenever filaments were formed or stayed intact, they appeared associated with the nucleic acids. These electron microscopic observations were corroborated by sucrose gradient analysis of complexes obtained from preformed vimentin filaments and radioactively labeled heteroduplexes. Among the duplexes of the DNA type, particularly poly(dG).poly(dC), and, of those of the RNA type, preferentially poly(rA).poly(rU), were carried by the filaments with high efficiency into the pellet fraction. Single-stranded 18S and 28S rRNA interacted only weakly with vimentin filaments. Nevertheless, in a mechanically undisturbed environment, vimentin filaments could be densely decorated with intact 40S and 60S ribosomal subunits as revealed by electron microscopy. These results indicate that, in contrast to single-stranded nucleic acids with their compact random coil configuration, double-stranded nucleic acids with their elongated and flexible shape have the capability to stably interact with the helically arranged, surface-exposed amino-terminal polypeptide chains of vimentin filaments. Such interactions might be of physiological relevance in regard to the transport and positioning of nucleic acids and nucleoprotein particles in the various compartments of eukaryotic cells. Conversely, nucleic acids might be capable of affecting the cytoplasmic organization of vimentin filament networks through their filament-destabilizing potentials.  相似文献   

13.
We used rotary-shadowing electron microscopy to map the calmodulin-and actin-binding sites on the brain spectrin, calspectin (or fodrin). Calspectin dimers appeared as rods 110 nm long and joined in a head-to- head manner to form tetramers 220 nm long. We determined calmodulin- binding sites by a ferritin-labeling method combined with biotin-avidin complex formation. Ferritin particles were found to attach to the head parts of calspectin dimers at a position 10-20 nm from the top of the head. The number of the calmodulin-binding sites seemed to be only one for each dimer and two for each tetramer. In contrast, the actin- binding sites were localized at the tail ends of the calspectin molecules. The tetramers attached to muscle F-actin with their tail ends and often cross-linked adjacent filaments. The results are discussed in view of the analogy to the erythrocyte spectrin.  相似文献   

14.
Erythrocytes possess a spectrin-based cytoskeleton that provides elasticity and mechanical stability necessary to survive the shear forces within the microvasculature. The architecture of this membrane skeleton and the nature of its intermolecular contacts determine the mechanical properties of the skeleton and confer the characteristic biconcave shape of red cells. We have used cryo-electron tomography to evaluate the three-dimensional topology in intact, unexpanded membrane skeletons from mouse erythrocytes frozen in physiological buffer. The tomograms reveal a complex network of spectrin filaments converging at actin-based nodes and a gradual decrease in both the density and the thickness of the network from the center to the edge of the cell. The average contour length of spectrin filaments connecting junctional complexes is 46 ± 15 nm, indicating that the spectrin heterotetramer in the native membrane skeleton is a fraction of its fully extended length (∼190 nm). Higher-order oligomers of spectrin were prevalent, with hexamers and octamers seen between virtually every junctional complex in the network. Based on comparisons with expanded skeletons, we propose that the oligomeric state of spectrin is in a dynamic equilibrium that facilitates remodeling of the network as the cell changes shape in response to shear stress.  相似文献   

15.
Interaction of the gonococcal porin P.IB with G- and F-actin   总被引:5,自引:0,他引:5  
The invasion of epithelial cells by N. gonorrheae is accompanied by formation of a halo of actin filaments around the enveloped bacterium. The transfer of the bacterial major outer membrane protein, porin, to the host cell membrane during invasion makes it a candidate for a facilitator for the formation of this halo. Western analysis shows here that gonococcal porin P.IB associates with the actin cytoskeleton in infected cells. Using the pyrene-labeled Mg forms of yeast and muscle actins, we demonstrate that under low ionic strength conditions, P.IB causes formation of filamentous actin assemblies, although they, unlike F-actin, cannot be internally cross-linked with N,N'-4-phenylenedimaleimide (PDM). In F-buffer, low porin concentrations appear to accelerate actin polymerization. Higher P.IB concentrations lead to the formation of highly decorated fragmented F-actin-like filaments in which the actin can be cross-linked by PDM. Co-assembly of P.IB with a pyrene-labeled mutant actin, S(265)C, prevents formation of a pyrene excimer present with labeled S(265)C F-actin alone. Addition of low concentrations of porin to preformed F-actin results in sparsely decorated F-actin. Higher P.IB concentrations extensively decorate the filaments, thereby altering their morphology to a state like that observed when the components are copolymerized. With preformed labeled S(265)C F-actin, P.IB quenches the pyrene excimer. This decrease is prevented by the F-actin stabilizers phalloidin and to a lesser extent beryllium fluoride. P.IB's association with the actin cytoskeleton and its ability to interact with and remodel actin filaments support a direct role for porin in altering the host cell cytoskeleton during invasion.  相似文献   

16.
We have compared tryptic fragments of three types of intermediate filaments, emphasizing structural characteristics as seen in the electron microscope. Variable, long alpha-helical rod fragments were found to be similar for keratin, neurofilaments and desmin filaments. Short rod fragments from keratin and neurofilaments appeared similar when observed by electron microscopy. Short rod fragments were not seen in desmin filament digests. In addition to these elongated particles, globular fragments, which have not been described previously, were obtained from all three types of intermediate filaments. These globular fragments were characterized by gel filtration and electron microscopy, and compared to globular proteins of known size using both methods. The diameter was about 6 nm and the molecular weight was estimated to be 50 000-60 000. These globular particles may comprise the short, nonhelical regions from several IF protein subunits, which are clustered into an interface in the intact filament or protofilaments.  相似文献   

17.
Dystrophin has been shown to be associated in cells with actin bundles. Dys-246, an N-terminal recombinant protein encoding the first 246 residues of dystrophin, includes two calponin-homology (CH) domains, and is similar to a large class of F-actin cross-linking proteins including alpha-actinin, fimbrin, and spectrin. It has been shown that expression or microinjection of amino-terminal fragments of dystrophin or the closely related utrophin resulted in the localization of these protein domains to actin bundles. However, in vitro studies have failed to detect any bundling of actin by either intact dystrophin or Dys-246. We show here that the structure of F-actin can be modulated so that there are two modes of Dys-246 binding, from bundling actin filaments to only binding to single filaments. The changes in F-actin structure that allow Dys-246 to bundle filaments are induced by covalent modification of Cys-374, proteolytic cleavage of F-actin's C-terminus, mutation of yeast actin's N-terminus, and different buffers. The present results suggest that F-actin's structural state can have a large influence on the nature of actin's interaction with other proteins, and these different states need to be considered when conducting in vitro assays.  相似文献   

18.
Actin and spectrin were isolated from washed red blood cell membranes. Spectrin bound and polymerized erythrocyte actin in the absence of potassium. Spectrin coated into polystyrene latex particles bound 8--9 mol of erythrocyte actin per mol of spectrin when actin was in its depolymerized state. Spectrin enhanced the interaction of erythrocyte actin with muscle myosin as manifested by changes in Mg2+-ATPase activity. A similar enhancement also was observed with muscle alpha-actinin while muscle tropomyosin abolished these effects. The data suggest that spectrin may play the role of polymerizing factor as well as the anchoring site for erythrocyte actin just as alpha-actinin is the anchoring site for actin filaments in muscle and other non-muscle cells.  相似文献   

19.
I reported previously (Higashi-Fujime, S., 1982, Cold Spring Harbor Symp. Quant. Biol., 46:69-75) that active movements of fibrils composed of F-actin and myosin filaments occurred after superprecipitation in the presence of ATP at low ionic strengths. When the concentration of MgCl2 in the medium used in the above experiment was raised to 20-26 mM, bundles of F-actin filaments, in addition to large precipitates, were formed spontaneously both during and after superprecipitation. Along these bundles, many myosin filaments were observed to slide unidirectionally and successively through the bundle, from one end to the other. The sliding of myosin filaments continued for approximately 1 h at room temperature at a mean rate of 6.0 micron/s, as long as ATP remained in the medium. By electron microscopy, it was found that most F-actin filaments decorated with heavy meromyosin pointed to the same direction in the bundle. Myosin filaments moved actively not only along the F-actin bundle but also in the medium. Such movement probably occurred along F-actin filaments that did not form the bundle but were dispersed in the medium, although dispersed F-actin filaments were not visible under the microscope. In this case, myosin filament could have moved in a reverse direction, changing from one F-actin filament to the other. These results suggested that the direction of movement of myosin filament, which has a bipolar structure and the potentiality to move in both directions, was determined by the polarity of F-actin filament in action.  相似文献   

20.
Tandem calponin-homology (CH) domains play an important role in the actin-binding function of many spectrin superfamily proteins. Crystal structures from several of these proteins have suggested a flexibility between these domains, and the manner in which these domains bind to F-actin has been the subject of some controversy. A recent paper has used electron microscopy and three-dimensional reconstruction to examine the complex of the utrophin tandem CH domain with F-actin. In contrast to our previously published study, a closed conformation of the two calponin-homology domains was suggested in the new work. We show here that the new results can be explained by incomplete binding of utrophin to actin, heterogeneity in the mode of binding, and angular disorder in F-actin. We conclude that helical averaging applied to disordered filaments is responsible for their results, and that approaches designed to separate out homogeneous subsets within such filamentous complexes offer many advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号