首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzymatic degradation of hyaluronan (HA) by testicular hyaluronidase (HAase, hyaluronate 4-glucanohydrolase) requires inclusion of mono- or divalent cations in the reaction mixture. Most divalent cations activated HAase with equal potency; however, Cu2+ suppressed degradation, and Ca2+ showed a concentration-dependent regulation of size of the oligosaccharide products. Careful selection of HAase assay parameters is critical for discovery of novel HAase inhibitors and for preparation of controlled-size oligosaccharide fragments.  相似文献   

2.
M Banasik  H Komura  K Ueda 《FEBS letters》1990,263(2):222-224
Various vitamins and vitamin-like substances inhibited the activity of poly(ADP-ribose) synthetase in vitro. The most potent were essential fatty acids, i.e. arachidonic acid, linoleic acid, and linolenic acid; their 50% inhibitory concentrations (IC50) were 44-110 microM, indicating a higher potency than nicotinamide, a well-known vitamin inhibitor (IC50 = 210 microM). Vitamins K3, K1, and retinal were the next strongest inhibitors, followed by alpha-lipoic acid, coenzyme Q0, and pyridoxal 5-phosphate. Nicotinamide and vitamin K3 exhibited mixed-type inhibition with respect to NAD+, while arachidonic acid exhibited dual inhibitions, competitive at 50 microM and mixed-type at 100 microM.  相似文献   

3.
Hyaluronidase (HAase) plays an important role in the control of the size and concentration of hyaluronan (HA) chains, whose biological properties strongly depend on their length. Our previous studies of HA hydrolysis catalyzed by testicular HAase demonstrated that, whilst the substrate-dependence curve has a Michaelis-Menten shape with a 0.15 mol L(-1) ionic strength, at low ionic strength (5 mmol L(-1)), a strong decrease in the initial hydrolysis rate is observed at high substrate concentrations; the HA concentration for which the initial rate is maximum increases when the HAase concentration is increased. After examination of various hypotheses, we suggested that this could be explained by the ability of HA to form non-specific complexes with HAase, which thus becomes unable to catalyze HA hydrolysis. In order to verify this hypothesis, we first showed from turbidimetric measurements that HAase, like albumin, is able to form electrostatic complexes with HA. Albumin then was used as a non-catalytic protein able to compete with HAase for the formation of non-specific complexes with HA, allowing HAase to be free and catalytically active. The kinetic results showed that the HA-HAase non-specific complex inhibits HAase catalytic activity towards HA. Depending on the albumin concentration with respect to the HAase and HA concentrations, albumin can either remove this inhibition or induce another type of inhibition. Finally, the extent of such non-specific interactions between polyelectrolytes and proteins in HAase inhibition or activation, in particular under in vivo conditions, is discussed.  相似文献   

4.
A fluorimetric Morgan-Elson assay method for hyaluronidase activity   总被引:1,自引:0,他引:1  
Despite their physiological importance, hyaluronidases (HAases) have long been "neglected enzymes," due, presumably, in part to the lack of rapid, sensitive assays. Currently, the colorimetric Morgan-Elson assay method, which is based upon the generation of a new reducing N-acetyl-D-glucosamine terminus with each cleavage reaction, is most widely employed but is yet insensitive. We, therefore, reinvestigated the colorimetric method and established the fluorimetric Morgan-Elson assay for HAase activity, with the optimized tetraborate reagent. The fluorimetric assay, requiring neither specialized reagents nor a long time to perform, provided high sensitivity, nearly comparable to that of enzyme-linked immunosorbent assay (ELISA)-like assays, with a detection limit of 5 x 10(-3)NFU/ml of bovine testicular HAase after 1-h incubation. The increased sensitivity permitted rapid measurement of low HAase activity in biological samples such as human and rabbit serum HAases, the latter of which has not been detected either by an ELISA-like assay or by zymography. Human serum HAase was easily characterized it along with its optimum pH and kinetic parameters.  相似文献   

5.
Hyaluronan (HA), a polymeric glycosaminoglycan ubiquitously present in higher animals, is hydrolyzed by hyaluronidases (HAases). Here, we used bee HAase as a model enzyme to study the HA-HAase interaction. Located in close proximity to the active center, a bulky surface loop, which appears to obstruct one end of the substrate binding groove, was found to be functionally involved in HA turnover. To better understand kinetic changes in substrate interaction, binding of high molecular weight HA to catalytically inactive HAase was monitored by means of quartz crystal microbalance technology. Replacement of the delimiting loop by a tetrapeptide interconnection increased the affinity for HA up to 100-fold, with a K(D) below 1 nm being the highest affinity among HA-binding proteins surveyed so far. The experimental data of HA-HAase interaction were further validated showing best fit to the theoretically proposed sequential two-site model. Besides the one, which had been shown previously in course of x-ray structure determination, a previously unrecognized binding site works in conjunction with an unbinding loop that facilitates liberation of hydrolyzed HA.  相似文献   

6.
Two new bi-pyridine compounds, [1,4'] Bipiperidinyl-1'-yl-naphthan-2-yl-methanone (I) and [1,4'] Bipiperidinyl-1'-yl-4-methylphenyl-methane (II) were synthesized and examined for inhibition of the catecholase activity of mushroom tyrosinase in 10 mM phosphate buffer pH 6.8, at 293 K using UV spectrophotometry. Inhibition kinetics indicated that they were uncompetitive inhibitors and the value of the inhibition constants were 5.87 and 1.31 microM for I and II, respectively, which showed high potency. Fluorescent studies confirmed the uncompetitive type of inhibition for these two inhibitors. The inhibition mechanism presumably comes from the presence of a particular hydrophobe site which can accommodate these inhibitors. This site could be formed due to a probable conformational change that was induced by binding of substrate with the enzyme.  相似文献   

7.
In this study, the effects of fragmentation of the glycosoaminoglycans of the cell-associated matrix by hyaluronidase (HAase) on the expression of CD44 receptor and matrix metalloproteinase (MMP) mRNAs in cultured articular chondrocytes were examined. Chondrocytes, isolated from rabbit and bovine articular cartilage, were treated with bovine testicular HAase (0-200 units/ml) in the presence or absence of an antibody for CD44. The mRNA levels of CD44, CD44 variant (CD44v), MMPs (MMP-1, -3 and -9), and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined by RT-PCR. The treatment of cultured chondrocytes with HAase resulted in the production of low molecular weight fragments of hyaluronan (HA). The expression of CD44, CD44v and MMP (MMP-1, -3 and -9) mRNAs, but not TIMP-1 or TIMP-2 mRNA, was up-regulated in the cultures treated with HAase, whereas this expression was not affected by treatment with purified HA of 1.0 x 10(5) Da. Furthermore, the induction of CD44 and MMPs on treatment with HAase was suppressed by an anti-CD44 antibody. The results suggest that the fragmentation of HA may lead to cartilage destruction in terms of the enhanced expression of MMPs as well as the upregulation of CD44.  相似文献   

8.
Onion and garlic essential oils were previously shown to inhibit mouse skin tumor promotion, as were the enzymes, lipoxygenase, and cyclooxygenase. In the present study, the inhibition of soybean lipoxygenase (EC 1.13.11.12) by onion and garlic components and related compounds was investigated. The IC50 values as well as the kinetic inhibition constants were determined for the most active compounds. Di-(1-propenyl) sulfide, an analog of the substrate moiety required for oxygenase action, was the only irreversible inhibitor observed with Ki = 59 microM and k3 = 0.53/min. Inhibition in the presence of substrate was uncompetitive at 88 and 132 microM linoleic acid with Ki = 129 microM. At 173 microM linoleic acid, however, inhibition was competitive with Ki = 66 microM. Dially trisulfide, allyl methyl trisulfide, and diallyl disulfide were competitive inhibitors, while 1-propenylpropyl sulfide and (E, Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide (ajoene) were mixed inhibitors. Nordihydroguaiaretic acid (NDGA), the most potent lipoxygenase inhibitor, was a competitive inhibitor with Ki = 0.29 microM. The results indicate a relative potency of inhibition for structural features in the following order: di(1-propenyl) sulfide greater than an alkenyl trisulfide greater than an alkenyl disulfide. Di(n-propyl) disulfide, a major onion oil component, inhibited neither lipoxygenase nor promotion. Di(1-propenyl) sulfide and ajoene inhibited both. This suggests that the inhibition of lipoxygenase may be involved in antipromotion.  相似文献   

9.
Receptor-mediated cyclic GMP formation in N1E-115 murine neuroblastoma cells appears to involve oxidative metabolism of arachidonic acid. Evidence in support of this includes the blockade of this response by lipoxygenase inhibitors, e.g., eicosatetraynoic acid (ETYA) or other metabolic perturbants, e.g., methylene blue. It was recently discovered that the lipoxygenase products 15-hydroxyeicosatetraenoic (15-HETE) acid and 12-HETE, like ETYA, were inhibitors of M1 muscarinic receptor-mediated cyclic GMP formation. In the present report, the effects of monoHETEs are explored in more detail, particularly with regard to the function of the muscarinic receptor. Like 12-HETE and 15-HETE (IC50 = 13 and 11 microM, respectively), 5-HETE inhibited the cyclic GMP response to the muscarinic receptor (IC50 = 10 microM). All three of these monoHETEs were shown also to be inhibitors of the cyclic GMP responses to receptors stimulated by carbachol, histamine, thrombin, neurotensin, and bradykinin. 15-HETE was shown to inhibit the muscarinic receptor-mediated response in a complex manner (apparent noncompetitive and uncompetitive components; IC50 = 18 and 2 microM, respectively). 15-HETE did not inhibit either the M1 muscarinic receptor-stimulated release of [3H]inositol phosphates from cellular phospholipids or the M2 muscarinic receptor-mediated inhibition of hormone (prostaglandin E1)-induced AMP formation. It seemed possible that the monoHETEs could enter into biochemical pathways for arachidonate in N1E-115 cells. [3H]Arachidonate and the three [3H]-monoHETEs all rapidly labeled the membrane lipids of intact N1E-115 cells, with each [3H]eicosanoid producing a unique labeling profile. [3H]15-HETE labeling was noteworthy in that 85% of the label found in the phospholipids was in phosphatidylinositol (PI;t1/2 to steady state = 3 min). Exogenous 15-HETE inhibited the labeling of PI by [3H]arachidonate (IC50 = 28 microM) and elevated unesterified [3H]arachidonate levels. Thus, the mechanism of blockade of receptor-mediated cyclic GMP responses by monoHETEs is likely to be more complex than the simple inhibition of cytosolic mechanisms, e.g., generation of a putative second messenger by lipoxygenase, and may involve also alterations of membrane function accompanying the redistributions of esterified arachidonate.  相似文献   

10.
The synthesis of 10-formyl-DDACTHF (3) as a potential inhibitor of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide ribonucleotide transformylase (AICAR Tfase) is reported. Aldehyde 3, the corresponding gamma- and alpha-pentaglutamates 21 and 25 and related agents were evaluated for inhibition of folate-dependent enzymes including GAR Tfase and AICAR Tfase. The inhibitors were found to exhibit potent cytotoxic activity (CCRF-CEM IC(50) for 3=60nM) that exceeded their enzyme inhibition potency [K(i) (3)=6 and 1 microM for Escherichia coli GAR and human AICAR Tfase, respectively]. Cytotoxicity rescue by medium purines, but not pyrimidines, indicated that the potent cytotoxic activity is derived from selective purine biosynthesis inhibition and rescue by AICAR monophosphate established that the activity is derived preferentially from GAR versus AICAR Tfase inhibition. The potent cytotoxic compounds including aldehyde 3 lost activity against CCRF-CEM cell lines deficient in the reduced folate carrier (CCRF-CEM/MTX) or folylpolyglutamate synthase (CCRF-CEM/FPGS(-)) establishing that their potent activity requires both reduced folate carrier transport and polyglutamation. Unexpectedly, the pentaglutamates displayed surprisingly similar K(i)'s versus E. coli GAR Tfase and only modestly enhanced K(i)'s versus human AICAR Tfase. On the surface this initially suggested that the potent cytotoxic activity of 3 and related compounds might be due simply to preferential intracellular accumulation of the inhibitors derived from effective transport and polyglutamation (i.e., ca. 100-fold higher intracellular concentrations). However, a subsequent examination of the inhibitors against recombinant human GAR Tfase revealed they and the corresponding gamma-pentaglutamates were unexpectedly much more potent against the human versus E. coli enzyme (K(i) for 3, 14nM against rhGAR Tfase versus 6 microM against E. coli GAR Tfase) which also accounts for their exceptional cytotoxic potency.  相似文献   

11.
Steroid sulfatase (STS) is an attractive target for a range of oestrogen- and androgen-dependent diseases. In search of novel chemotypes of STS inhibitors, we had previously identified nortropinyl-arylsulfonylureas 1; however, while these compounds were good inhibitors of purified STS (lowest K(i)=76 nM), they showed only weak inhibition of STS activity in cells (lowest IC(50) around 2 microM). Extended structure-activity relationship studies involving modification of the phenylacetyl side chain and replacement of the nortropine element by simpler scaffolds led to the discovery of N-acyl arylsulfonamides, more specifically N-(Boc-piperidine-4-carbonyl)-benzenesulfonamides, as STS inhibitors, some of which exhibit improved cellular potency (best IC(50)=270 nM).  相似文献   

12.
Simple modifications to the anhydride moiety of norcantharidin have lead to the development of a series of analogues displaying modest PP1 inhibition (low muM IC(50)s) comparable to that of norcantharidin (PP1 IC(50)=10.3+/-1.37 microM). However, unlike norcantharidin, which is a potent inhibitor of PP2A (IC(50)=2.69+/-1.37 microM), these analogues show reduced PP2A inhibitory action resulting in the development of selective PP1 inhibitory compounds. Data indicates that the introduction of two ortho-disposed substituents on an aromatic ring, or para-substituent favours PP1 inhibition over PP2A inhibition. Introduction of a p-morphilinoaniline substituent, 35, affords an inhibitor displaying PP1 IC(50)=6.5+/-2.3 microM; and PP2A IC(50)=7.9+/-0.82 microM (PP1/PP2A=0.82); and a 2,4,6-trimethylaniline, 23, displaying PP1 IC(50)=48+/-9; and PP2A IC(5) 85+/-3 microM (PP1/PP2A=0.56). The latter shows a 7-fold improvement in PP1 versus PP2A selectivity when compared with norcantharidin. Subsequent analysis of 23 and 35 as potential PP2B inhibitors revealed modest inhibition with IC(50)s of 89+/-6 and 42+/-3 microM, respectively, and returned with PP1/PP2B selectivities of 0.54 and 0.15. Thus, these analogues are the simplest and most selective PP1 inhibitors retaining potency reported to date.  相似文献   

13.
Hyaluronan (HA) hydrolysis catalysed by hyaluronidase (HAase) is strongly inhibited when performed at low HAase over HA concentration ratio and under low ionic strength conditions. The reason is the ability of long HA chains to form electrostatic and non-catalytic complexes with HAase. For a given HA concentration, low HAase concentrations lead to very low hydrolysis rates because all the HAase molecules are sequestered by HA, whilst high HAase concentrations lead to high hydrolysis rates because the excess of HAase molecules remains free and active. At pH 4, non-catalytic proteins like bovine serum albumin (BSA) are able to compete with HAase to form electrostatic complexes with HA, liberating HAase which recovers its catalytic activity. The general scheme for the BSA-dependency is thus characterised by four domains delimited by three noticeable points corresponding to constant BSA over HA concentration ratios. The existence of HA–protein complexes explains the atypical kinetic behaviour of the HA / HAase system. We also show that HAase recovers the Michaelis–Menten type behaviour when the HA molecule complexed with BSA in a constant complexion state, i.e. with the same BSA over HA ratio, is considered for substrate. When the ternary HA / HAase / BSA system is concerned, the stoichiometries of the HA–HAase and HA–BSA complexes are close to 10 protein molecules per HA molecule for a native HA of 1 MDa molar mass. Finally, we show that the behaviour of the system is similar at pH 5.25, although the efficiency of BSA is less.  相似文献   

14.
Hyaluronan (HA) hydrolysis catalyzed by hyaluronidase (HAase) is inhibited at low HAase over HA ratio and low ionic strength, because HA forms electrostatic complexes with HAase, which is unable to catalyze hydrolysis. Bovine serum albumin (BSA) was used as a model to study the HA-protein electrostatic complexes at pH 4. At low ionic strength, there is formation of (i) neutral insoluble complexes at the phase separation and (ii) small positively-charged or large negatively-charged soluble complexes whether BSA or HA is in excess. According to the ionic strength, different types of complex are formed. Assays for HA and BSA led to the determination of the stoichiometry of these complexes. HAase was also shown to form the various types of complex with HA at low ionic strength. Finally, we showed that at 0 and 150 mmol L(-1) NaCl, BSA competes with HAase in forming complexes with HA and thus induces HAase release resulting in a large increase in the hydrolysis rate. These results, in addition to data in the literature, show that HA-protein complexes, which can exist under numerous and varied conditions of pH, ionic strength and protein over HA ratio, might control the in vivo HAase activity.  相似文献   

15.
A new class of 1,3-diphenylprop-2-yn-1-ones possessing a p-MeSO2 COX-2 phamacophore on the C-3 phenyl ring was designed for evaluation as dual inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX). Among the group of compounds evaluated, 1-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)prop-2-yn-1-one (11j) exhibited excellent COX-2 inhibitory potency (COX-2 IC50 = 0.1 microM) and selectivity (SI = 300), whereas 1-(4-cyanophenyl)-3-(4-methanesulfonylphenyl)prop-2-yn-1-one (11d) exhibited an optimal combination of COX and LOX inhibition (COX-2 IC50 = 1.0 microM; COX-2 SI = 31.5; 5-LOX IC50 = 1.0 microM; 15-LOX IC50 = 3.2 microM).  相似文献   

16.
A series of potent inhibitors of the sodium hydrogen exchanger-1 (NHE-1) is described. Structure-activity relationships identified the 3-methyl-4-fluoro analog 9t as a highly potent (IC50 = 0.0065 microM) and selective (NHE-2/NHE-1=1400) non-acylguanidine NHE-1 inhibitor. Pharmacokinetic studies showed that compound 9t has an oral bioavailability of 52% and a plasma half life of 1.5 h in rats. Because of its promising potency, selectivity, and a good pharmacokinetic profile, compound 9t was selected for further studies.  相似文献   

17.
The phase transfer method was applied to perform the nucleophilic substitution of 2,6-dichloropurines by modified arylalkyl alcohol or phenols. Since under these conditions only the 6-halogen is exchanged, this method gives 2-chloro-6-aryloxy- and 2-chloro-6-arylalkoxy-purines. 2-Chloro-6-benzylthiopurine was synthesized by alkylation of 2-chloro-6-thiopurine with benzyl bromide. The stereoisomers of 2-chloro-6-(1-phenyl-1-ethoxy)purine were obtained from R- and S-enantiomers of sec.-phenylethylalcohol and 2,6-dichloropurine. All derivatives were tested for inhibition with purified hexameric E. coli purine nucleoside phosphorylase (PNP). For analogues showing IC50 < 10 microM, the type of inhibition and inhibition constants were determined. In all cases the experimental data were best described by the mixed-type inhibition model and the uncompetitive inhibition constant, Kiu, was found to be several-fold lower than the competitive inhibition constant, Kic. This effect seems to be due to the 6-aryloxy- or 6-arylalkoxy substituent, because a natural PNP substrate adenine, as well as 2-chloroadenine, show mixed type inhibition with almost the same inhibition constants Kiu and Kic. The most potent inhibition was observed for 6-benzylthio-2-chloro-, 6-benzyloxy-2-chloro-, 2-chloro-6-(2-phenyl-1-ethoxy), 2-chloro-6-(3-phenyl-1-propoxy)- and 2-chloro-6-ethoxypurines (Kiu = 0.4, 0.6, 1.4, 1.4 and 2.2 microM, respectively). The R-stereoisomer of 2-chloro-6-(1-pheny-1-ethoxy)purine has Kiu = 2.0 microM, whereas inhibition of its S counterpart is rather weak (IC50 > 12 microM). More rigid (e.g. phenoxy-), non-planar (cyclohexyloxy-), or more bulky (2,4,6-trimethylphenoxy-) substituents at position 6 of the purine base gave less potent inhibitors (IC50 = 26, 56 and > 100 microM, respectively). The derivatives are selective inhibitors of hexameric "high-molecular mass" PNPs because no inhibitory activity vs. trimeric Cellulomonas sp. PNP was detected. By establishing the ligand-dependent stabilization pattern of the E. coli PNP it was shown that the new derivatives, similarly as the natural purine bases, are able to form a dead-end ternary complex with the enzyme and orthophosphate. It was also shown that the derivatives are substrates in the reverse synthetic direction catalyzed by E. coli PNP.  相似文献   

18.
Hyaluronan (HA) is the substrate of hyaluronidase (HAase). In addition, HA is able to form electrostatic complexes with many proteins, including HAase. Experiments have shown the strong inhibition of the HA hydrolysis catalyzed by HAase when performed at low HAase over HA concentration ratio and under low ionic strength conditions. Non-catalytic P proteins are able to compete with HAase to form electrostatic complexes with HA and thus to modulate HAase activity. We have modeled the HA–HAase–P system by considering the competition between the two complex equilibria HA–P and HA–HAase, the Michaelis–Menten type behavior of HAase, and the non-activity of the electrostatically complexed HAase. Simulations performed by introducing experimental data produce a theoretical behavior similar to the experimental one, including all the atypical phenomena observed: substrate-dependence, enzyme-dependence and protein-dependence of HAase. This shows that our assumptions are sufficient to explain the behavior of the system and allow us to estimate unknown parameters and suggest new developments.  相似文献   

19.
Hyaluronan (HA) has various biological functions that are strongly dependent on its chain length. In some cases, as in inflammation and angiogenesis, long and short chain-size HA effects are antagonistic. HA hydrolysis catalyzed by hyaluronidase (HAase) is believed to be involved in the control of the balance between longer and shorter HA chains. Our studies of native HA hydrolysis catalyzed by bovine testicular HAase have suggested that the kinetic parameters depend on the chain size. We thus used HA fragments with a molar mass ranging from 8x10(2) g mol(-1) to 2.5x10(5) g mol(-1) and native HA to study the influence of the chain length of HA on the kinetics of its HAase-catalyzed hydrolysis. The initial hydrolysis rate strongly varied with HA chain length. According to the Km and Vm/Km values, the ability of HA chains to form an efficient enzyme-substrate complex is maximum for HA molar masses ranging from 3x10(3) to 2x10(4) g mol(-1). Shorter HA chains seem to be too short to form a stable complex and longer HA chains encounter difficulties in forming a complex, probably because of steric hindrance. The hydrolysis Vm values strongly suggest that as the chain length decreases the HAase increasingly catalyses transglycosylation rather than hydrolysis. Finally, two HA chain populations, corresponding to HA chain molar masses lower and higher than approximately 2x10(4) g mol(-1), are identified and related to the bi-exponential character of the model we have previously proposed to fit the experimental points of the kinetic curves.  相似文献   

20.
Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be ascribed to the relatively poor in vitro rat isozyme inhibitory potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号