首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In both plant and mammalian Gram-negative pathogenic bacteria, type III secretion systems (TTSSs) play a crucial role in interactions with the host. All these systems share conserved proteins (called Hrc in plant pathogens), but each bacterium also produces a variable number of additional type III proteins either unique or with counterparts only in a limited number of related systems. In order to investigate the role of the different proteins encoded by the hrp gene cluster of the phytopathogenic bacterium Ralstonia solanacearum, non-polar mutants in all hrp genes (except for hrcQ) were analysed for their interactions with plants, their ability to secrete the PopA protein and their production of the Hrp pilus. In addition to Hrc proteins and the HrpY major component of the Hrp pilus, four additional Hrp proteins are indispensable for type III secretion and for interactions with plants. We also provide evidence that hrpV and hrpX mutants can still target the HrpY pilin outside the bacterial cell but are impaired in the production of Hrp pili, indicating that HrpV and HrpX proteins are involved in the assembly of this appendage.  相似文献   

2.
3.
Gram-negative bacteria have surface appendages that assemble via different secretion machineries. Recently, new experimental approaches have contributed to a better understanding of the molecular mechanisms of flagellar and pilus assembly, and protein secretion. These findings can be applied to plant pathogenic bacteria, which probably transfer effector proteins directly into their eukaryotic host cells. Here, it is suggested that assembly of Hrp pili occurs in the periplasm and that unfolded effector proteins attach to pilins within the pili, thus effecting protein translocation. A two-domain structure for the HrpA pilin from Pseudomonas syringae is also predicted.  相似文献   

4.
The plant pathogenic bacterium Pseudomonas syringae uses a type III secretion system to inject virulence proteins directly into the cytoplasm of its hosts. The P. syringae type III secretion apparatus is encoded, in part, by the HrpZ operon, which carries the hrpA gene encoding the pilin subunit of the pilus, various components of the structural apparatus, and the HrpZ harpin protein that is believed to produce pores in the host cell membrane. The pilus of the type III system comes into direct contact with the host cell and is, therefore, a likely target of the host's pathogen surveillance systems. We sequenced and analyzed 22 HrpZ operons from P. syringae strains spanning the diversity of the species. Selection analyses, including K(a)/K(s) tests and Tajima's D, revealed strong diversifying selection acting on the hrpA gene. This form of selection enables pathogens to maintain genetic diversity within their populations and is often driven by selection imposed by host defense systems. The HrpZ operon also revealed a single significant recombination event that dramatically changed the evolutionary relationships among P. syringae strains from 2 quite distinct phylogroups. This recombination event appears to have introduced genetic diversity into a clade of strains that may now be undergoing positive selection. The identification of diversifying selection acting on the Hrp pilus across the whole population sample and positive selection within one P. syringae lineage supports a trench warfare coevolutionary model between P. syringae and its plant hosts.  相似文献   

5.
The type III secretion system (TTSS) is an essential requirement for the virulence of many Gram-negative bacteria infecting plants, animals and man. Pathogens use the TTSS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cell, where the effectors subvert host defences. Plant pathogens have to translocate their effector proteins through the plant cell wall barrier. The best candidates for directing effector protein traffic are bacterial appendages attached to the membrane-bound components of the TTSS. We have investigated the protein secretion route in relation to the TTSS appendage, termed the Hrp pilus, of the plant pathogen Pseudomonas syringae pv. tomato. By pulse expression of proteins combined with immunoelectron microscopy, we show that the Hrp pilus elongates by the addition of HrpA pilin subunits at the distal end, and that the effector protein HrpZ is secreted only from the pilus tip. Our results indicate that both HrpA and HrpZ travel through the Hrp pilus, which functions as a conduit for the long-distance translocation of effector proteins.  相似文献   

6.
The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria possesses a type III secretion (TTS) system necessary for pathogenicity in susceptible hosts and induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. X. campestris pv. vesicatoria produces filamentous structures, Hrp pili, at the cell surface under hrp-inducing conditions. The Hrp pilus acts as a cell surface appendage of the TTS system and serves as a conduit for the transfer of bacterial effector proteins into the plant cell cytosol. The major pilus component, the HrpE pilin, is unique to xanthomonads and is encoded within the hrp gene cluster. In this study, functional domains of HrpE were mapped by linker-scanning mutagenesis and by reporter protein fusions to an N-terminally truncated avirulence protein (AvrBs3Delta2). Thirteen five-amino-acid peptide insertion mutants were obtained and could be grouped into six phenotypic classes. Three permissive mutations were mapped in the N-terminal half of HrpE, which is weakly conserved within the HrpE protein family. Four dominant-negative peptide insertions in the strongly conserved C-terminal region suggest that this domain is critical for oligomerization of the pilus subunits. Reporter protein fusions revealed that the N-terminal 17 amino acid residues act as an efficient TTS signal. From these results, we postulate a three-domain structure of HrpE with an N-terminal secretion signal, a surface-exposed variable region of the N-terminal half, and a C-terminal polymerization domain. Comparisons with a mutant study of HrpA, the Hrp pilin from Pseudomonas syringae pv. tomato DC3000, and hydrophobicity plot analyses of several nonhomologous Hrp pilins suggest a common architecture of Hrp pilins of different plant-pathogenic bacteria.  相似文献   

7.
The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria expresses a type III secretion system that is necessary for both pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Here we show that X. campestris pv. vesicatoria produces filamentous structures, the Hrp pili, at the cell surface under hrp-inducing conditions. Analysis of purified Hrp pili and immunoelectron microscopy revealed that the major component of the Hrp pilus is the HrpE protein which is encoded in the hrp gene cluster. Sequence homologues of hrpE are only found in other xanthomonads. However, hrpE is syntenic to the hrpY gene from another plant pathogen, Ralstonia solanacearum. Bioinformatic analyses suggest that all major Hrp pilus subunits from gram-negative plant pathogens may share the same structural organization, i.e., a predominant alpha-helical structure. Analysis of nonpolar mutants in hrpE demonstrated that the Hrp pilus is essential for the productive interaction of X. campestris pv. vesicatoria with pepper host plants. Furthermore, a functional Hrp pilus is required for type III-dependent protein secretion. Immunoelectron microscopy revealed that type III-secreted proteins, such as HrpF and AvrBs3, are in close contact with the Hrp pilus during and/or after their secretion. By systematic analysis of nonpolar hrp/hrc (hrp conserved) and hpa (hrp associated) mutants, we found that Hpa proteins as well as the translocon protein HrpF are dispensable for pilus assembly, while all other Hrp and Hrc proteins are required. Hence, there are no other conserved Hrp or Hrc proteins that act downstream of HrpE during type III-dependent protein translocation.  相似文献   

8.
Type III secretion system-associated pili found in several plant pathogenic bacteria are required for injection of virulence proteins from bacteria into the plant cells. The possibility to use the type III secretion pilus of Pseudomonas syringae as an epitope display tool was studied. The advantage of the type III secretion pilus, compared with conventional fimbrial epitope display tools, is that the pilin subunits of the type III secretion pilus can auto-assemble into intact pili in vitro. Various peptides were inserted into the type III secretion pilin subunit, and secretion, assembly and surface properties of the modified pili were monitored. It was concluded that the outwards-projecting N-terminal region of the pilin can bear even 43 amino acids insertion. The three-dimensional structure of the epitope, however, can restrict the use of the pilus as an epitope display tool: a beta-hairpin structure was poorly tolerated.  相似文献   

9.
The Hrp pilus plays an essential role in the long-distance type III translocation of effector proteins from bacteria into plant cells. HrpA is the structural subunit of the Hrp pilus in Pseudomonas syringae pv. tomato (Pst) DC3000. Little is known about the molecular features in the HrpA protein for pilus assembly or for transporting effector proteins. From previous collections of nonfunctional HrpA derivatives that carry random pentapeptide insertions or single amino acid mutations, we identified several dominant-negative mutants that blocked the ability of wild-type Pst DC3000 to elicit host responses. The dominant-negative phenotype was correlated with the disappearance of the Hrp pilus in culture and inhibition of wild-type HrpA protein self-assembly in vitro. Dominant-negative HrpA mutants can be grouped into two functional classes: one class exerted a strong dominant-negative effect on the secretion of effector proteins AvrPto and HopPtoM in culture, and the other did not. The two classes of mutant HrpA proteins carry pentapeptide insertions in discrete regions, which are interrupted by insertions without a dominant-negative effect. These results enable prediction of possible subunit-subunit interaction sites in the assembly of the Hrp pilus and suggest the usefulness of dominant-negative mutants in dissection of the role of the wild-type HrpA protein in various stages of type III translocation: protein exit across the bacterial cell wall, the assembly and/or stabilization of the Hrp pilus in the extracellular space, and Hrp pilus-mediated long-distance transport beyond the bacterial cell wall.  相似文献   

10.
The Hrp pilus: learning from flagella   总被引:5,自引:0,他引:5  
Plant pathogenic bacteria deliver avirulence and virulence effector proteins into plant cells via the hrp-gene-encoded type III secretion system. A key component of this secretion system is a surface appendage called the Hrp pilus. Recent results suggest that the Hrp pilus serves as a conduit for type III protein secretion and that it is assembled in a manner similar to the flagellum. The Hrp pilus is likely to be the functional equivalent of the needle extension, assembled by type III secretion systems of mammalian pathogenic bacteria.  相似文献   

11.
Pili are required for protein and/or DNA transfer from bacteria to recipient plant or bacterial cells, based on genetic evidence. However, it has never been shown directly that the effector proteins or DNA are localized along or inside the pili in situ. Failure to visualize an association of effector proteins/DNA with pili is the central issue in the debate regarding the exact function of pili in protein and DNA transfer. In this study, a newly developed in situ immunogold labelling procedure enabled visualization of the specific localization of type III effector proteins of Erwinia amylovora and Pseudomonas syringae pv. tomato along the Hrp pilus, but not along the flagellum or randomly in the intercellular space. In contrast, PelE, a pectate lyase secreted via the type II protein secretion system, was not associated with the Hrp pilus. These results provide direct evidence that type III secretion occurs only at the site of Hrp pilus assembly and that the Hrp pilus guides the transfer of effector proteins outside the bacterial cell, favouring the 'conduit/guiding filament' model.  相似文献   

12.
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.  相似文献   

13.
14.
15.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

16.
Type IV pili are long, flexible filaments that extend from the surface of Gram-negative bacteria and are formed by the polymerization of pilin subunits. This review focuses on the structural information available for each pilin subclass, type IVa and type IVb, highlighting the contributions crystal and nuclear magnetic resonance structures have made in understanding pilus function and assembly. In addition, the type II secretion pseudopilus subunit structure and helical assembly is compared to that of the type IV pilus. The pilin subunits adopt an alphabeta-roll fold formed by the hydrophobic packing of the C-terminal half of a long alpha-helix against an antiparallel beta-sheet. The conserved N-terminal half of the same alpha-helix, as well as two sequence- and structurally-variable regions, protrude from this globular head domain. Filament models have a hydrophobic core formed by the signature long alpha-helices, with variable regions at the filament surface.  相似文献   

17.
18.
Expression of multiple types of N-methyl Phe pili in Pseudomonas aeruginosa   总被引:5,自引:0,他引:5  
The nature of pili synthesized by Pseudomonas aeruginosa when plasmid-borne genes of homologous pilins from Bacteroides nodosus are introduced as thermoregulated expression systems has been ascertained. Expression of B. nodosus pili inhibited the production of indigenous P. aeruginosa pili, and an organism harbouring pilin genes from two strains of B. nodosus produced two serologically distinct populations of pili on each cell. Simultaneous production of both indigenous and foreign pili was achieved by partial induction of expression. Homogeneity in pilus structure suggests either that there is an exclusive specificity of interaction between identical pilin subunits in pilus assembly, or that each pilus is produced from the translation products of a single messenger RNA molecule, with translation and pilus assembly closely coupled.  相似文献   

19.
Corynebacterium diphtheriae SpaA pili are composed of three pilin subunits, SpaA, SpaB and SpaC. SpaA, the major pilin protein, is distributed uniformly along the pilus shaft, whereas SpaB is observed at regular intervals, and SpaC seems to be positioned at the pilus tip. Pilus assembly in C. diphtheriae requires the pilin motif and the C-terminal sorting signal of SpaA, and is proposed to occur by a mechanism of ordered cross-linking, whereby pilin-specific sortase enzymes cleave precursor proteins at sorting signals and involve the side-chain amino groups of pilin motif sequences to generate covalent linkages between pilin subunits. We show here that two elements of SpaA pilin precursor, the pilin motif and the sorting signal, are together sufficient to promote the polymerization of an otherwise secreted protein by a process requiring the function of the sortase A gene (srtA). Five other sortase genes are dispensable for SpaA pilus assembly. Further, the incorporation of SpaB into SpaA pili requires a glutamic acid residue within the E box motif of SpaA, a feature that is found to be conserved in other Gram-positive pathogens that encode sortase and pilin subunit genes with sorting signals and pilin motifs. When the main fimbrial subunit of Actinomyces naeslundii type I fimbriae, FimA, is expressed in corynebacteria, C. diphtheriae strain NCTC13129 polymerized FimA to form short fibres. Although C. diphtheriae does not depend on other actinomycetal genes for FimA polymerization, this process involves the pilin motif and the sorting signal of FimA as well as corynebacterial sortase D (SrtD). Thus, pilus assembly in Gram-positive bacteria seems to occur by a universal mechanism of ordered cross-linking of precursor proteins, the multiple conserved features of which are recognized by designated sortase enzymes.  相似文献   

20.
Type III protein secretion in Pseudomonas syringae   总被引:1,自引:0,他引:1  
The type III secretion system is an essential virulence system used by many Gram-negative bacterial pathogens to deliver effector proteins into host cells. This review summarizes recent advancements in the understanding of the type III secretion system of Pseudomonas syringae, including regulation of the type III secretion genes, assembly of the Hrp pilus, secretion signals, the putative type III effectors identified to date, and their virulence action after translocation into plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号