首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protection against West Nile virus (WNV) infection requires rapid viral sensing and the generation of an interferon (IFN) response. Mice lacking IFN regulatory factor 3 (IRF-3) show increased vulnerability to WNV infection with enhanced viral replication and blunted IFN-stimulated gene (ISG) responses. IRF-3 functions downstream of several viral sensors, including Toll-like receptor 3 (TLR3), RIG-I, and MDA5. Cell culture studies suggest that host recognizes WNV in part, through the cytoplasmic helicase RIG-I and to a lesser extent, MDA5, both of which activate ISG expression through IRF-3. However, the role of TLR3 in vivo in recognizing viral RNA and activating antiviral defense pathways has remained controversial. We show here that an absence of TLR3 enhances WNV mortality in mice and increases viral burden in the brain. Compared to congenic wild-type controls, TLR3(-/-) mice showed relatively modest changes in peripheral viral loads. Consistent with this, little difference in multistep viral growth kinetics or IFN-alpha/beta induction was observed between wild-type and TLR3(-/-) fibroblasts, macrophages, and dendritic cells. In contrast, a deficiency of TLR3 was associated with enhanced viral replication in primary cortical neuron cultures and greater WNV infection in central nervous system neurons after intracranial inoculation. Taken together, our data suggest that TLR3 serves a protective role against WNV in part, by restricting replication in neurons.  相似文献   

2.
3.
Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.  相似文献   

4.
The domain III of the West Nile virus (WNV) envelope glycoprotein (E) was shown to serve as virus attachment domain to the cellular receptor, and neutralizing Abs have been mapped to this specific domain. In this study, domain III of the WNV E protein (WNV E DIII) was expressed as a recombinant protein and its potential as a subunit vaccine candidate was evaluated in BALB/C mice. Immunization of WNV E DIII protein with oligodeoxynucleotides (CpG-DNA) adjuvant by i.p. injection was conducted over a period of 3 wk. The immunized mice generated high titer of WNV-neutralizing Abs. Murine Ab against WNV E DIII protein was also capable of neutralizing Japanese encephalitis virus. The IgG isotypes generated were predominantly IgG2a in the murine sera against the recombinant protein. Splenocyte cultures from the mice coadministrated with WNV E DIII protein and CpG secreted large amounts of IFN-gamma and IL-2 and showed proliferation of T cells in the presence of WNV E DIII protein. Overall, this study highlighted that recombinant WNV E DIII protein delivered in combination with CpG adjuvant to mice generated a Th1 immune response type against WNV and can serve as a potential vaccine to prevent WNV infection.  相似文献   

5.
West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 10(5) TCID(50) Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines.  相似文献   

6.
7.
8.
9.
IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6?/? mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6?/? mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6?/? mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6?/? mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.  相似文献   

10.
West Nile virus (WNV) is a re-emerging pathogen responsible for fatal outbreaks of meningoencephalitis in humans. Recent research using a mouse model of infection has indicated that specific chemokines and chemokine receptors help mediate the host response to WNV acting by at least three mechanisms: control of early neutrophil recruitment to the infection site (Cxcr2), control of monocytosis in blood (Ccr2) and control of leukocyte movement from blood to brain (Cxcr4, Cxcr3, Cxcl10 and possibly Ccr5). CCR5 also appears to be important in human infection, since individuals genetically deficient in this receptor have increased risk of symptomatic disease once infected. These findings provide detailed insight into non-redundant chemokine roles in organ-specific leukocyte recruitment during infection, and emphasize the importance of the balance between pathogen control and immunopathology in determining overall clinical outcome.  相似文献   

11.
In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean of the basic reproductive number of each species, weighted by the relative abundance of its population in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in Mexico.  相似文献   

12.
In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean of the basic reproductive number of each species, weighted by the relative abundance of its population in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in Mexico.  相似文献   

13.
West Nile virus (WNV) causes a severe central nervous system (CNS) infection in humans, primarily in the elderly and immunocompromised. Prior studies have established an essential protective role of several innate immune response elements, including alpha/beta interferon (IFN-alpha/beta), immunoglobulin M, gammadelta T cells, and complement against WNV infection. In this study, we demonstrate that a lack of IFN-gamma production or signaling results in increased vulnerability to lethal WNV infection by a subcutaneous route in mice, with a rise in mortality from 30% (wild-type mice) to 90% (IFN-gamma(-/-) or IFN-gammaR(-/-) mice) and a decrease in the average survival time. This survival pattern in IFN-gamma(-/-) and IFN-gammaR(-/-) mice correlated with higher viremia and greater viral replication in lymphoid tissues. The increase in peripheral infection led to early CNS seeding since infectious WNV was detected several days earlier in the brains and spinal cords of IFN-gamma(-/-) or IFN-gammaR(-/-) mice. Bone marrow reconstitution experiments showed that gammadelta T cells require IFN-gamma to limit dissemination by WNV. Moreover, treatment of primary dendritic cells with IFN-gamma reduced WNV production by 130-fold. Collectively, our experiments suggest that the dominant protective role of IFN-gamma against WNV is antiviral in nature, occurs in peripheral lymphoid tissues, and prevents viral dissemination to the CNS.  相似文献   

14.
West Nile virus (WNV), from the Flaviviridae family, is a re-emerging zoonotic pathogen of medical importance. In humans, WNV infection may cause life-threatening meningoencephalitis or long-term neurologic sequelae. WNV is transmitted by Culex spp. mosquitoes and both the arthropod vector and the mammalian host are equipped with antiviral innate immune mechanisms sharing a common phylogeny. As far as the current evidence is able to demonstrate, mosquitoes primarily rely on RNA interference, Toll, Imd and JAK-STAT signalling pathways for limiting viral infection, while mammals are provided with these and other more complex antiviral mechanisms involving antiviral effectors, inflammatory mediators, and cellular responses triggered by highly specialized pathogen detection mechanisms that often resemble their invertebrate ancestry. This mini-review summarizes our current understanding of how the innate immune systems of the vector and the mammalian host react to WNV infection and shape its pathogenesis.  相似文献   

15.
BACKGROUND: Lentiviral vectors, due to their capacity to transduce non-dividing cells, have become precious and worldwide used gene transfer systems. Their ability to efficiently and stably transduce dendritic cells (DCs) has led to their successful use as vaccination vectors for eliciting strong, specific and protective cellular immune responses mostly in anti-tumoral but also in anti-viral applications. However, the ability of lentiviral vectors to elicit an antibody-based protective immunity has, to date, not been evaluated. In the present study, we evaluated the potential of a lentiviral vector-based vaccine to elicit humoral immunity against West Nile virus (WNV). WNV is a mosquito-borne flavivirus that emerged in North America and causes encephalitis in humans, birds and horses. Neutralizing anti-WNV antibodies have been shown to be crucial for protection against WNV encephalitis. METHODS: The ability of lentiviral vector TRIP/sE(WNV), expressing the secreted soluble form of the envelope E-glycoprotein (sE(WNV)) from the highly virulent IS-98-ST1 strain of WNV, to induce a specific humoral response and protection against WNV infection was assessed in a mouse model of WNV encephalitis. RESULTS: Remarkably, a single immunization with a minute dose of TRIP/sE(WNV) was efficient at eliciting a long-lasting, protective and sterilizing humoral immunity, only 1 week after priming. CONCLUSIONS: This study broadens the applicability of lentiviral vectors as efficient non-replicating vaccines against pathogens for which a neutralizing humoral response is one active arm of the protective immunity. The TRIP/sE(WNV) lentiviral vector appears to be a promising tool for veterinary vaccination against zoonotic WNV.  相似文献   

16.
17.
Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.  相似文献   

18.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.  相似文献   

19.
Engle MJ  Diamond MS 《Journal of virology》2003,77(24):12941-12949
West Nile virus (WNV) is a mosquito-borne Flavivirus that causes encephalitis in a subset of susceptible humans. Current treatment for WNV infections is supportive, and no specific therapy or vaccine is available. In this study, we directly tested the prophylactic and therapeutic efficacy of polyclonal antibodies against WNV. Passive administration of human gamma globulin or mouse serum prior to WNV infection protected congenic wild-type, B-cell-deficient ( micro MT), and T- and B-cell-deficient (RAG1) C57BL/6J mice. Notably, no increased mortality due to immune enhancement was observed. Although immune antibody completely prevented morbidity and mortality in wild-type mice, its effect was not durable in immunocompromised mice: many micro MT and RAG1 mice eventually succumbed to infection. Thus, antibody by itself did not completely eliminate viral reservoirs in host tissues, consistent with an intact cellular immune response being required for viral clearance. In therapeutic postexposure studies, human gamma globulin partially protected against WNV-induced mortality. In micro MT mice, therapy had to be initiated within 2 days of infection to gain a survival benefit, whereas in the wild-type mice, therapy even 5 days after infection reduced mortality. This time point is significant because between days 4 and 5, WNV was detected in the brains of infected mice. Thus, passive transfer of immune antibody improves clinical outcome even after WNV has disseminated into the central nervous system.  相似文献   

20.
Since its incursion into North America in 1999, West Nile virus (WNV) has spread rapidly across the continent resulting in numerous human infections and deaths. Owing to the absence of an effective diagnostic test and therapeutic treatment against WNV, public health officials have focussed on the use of preventive measures in an attempt to halt the spread of WNV in humans. The aim of this paper is to use mathematical modelling and analysis to assess two main anti-WNV preventive strategies, namely: mosquito reduction strategies and personal protection. We propose a single-season ordinary differential equation model for the transmission dynamics of WNV in a mosquito-bird-human community, with birds as reservoir hosts and culicine mosquitoes as vectors. The model exhibits two equilibria; namely the disease-free equilibrium and a unique endemic equilibrium. Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if a certain threshold quantity , which depends solely on parameters associated with the mosquito-bird cycle, is less than unity. The public health implication of this is that WNV can be eradicated from the mosquito-bird cycle (and, consequently, from the human population) if the adopted mosquito reduction strategy (or strategies) can make . On the other hand, it is shown, using a novel and robust technique that is based on the theory of monotone dynamical systems coupled with a regular perturbation argument and a Liapunov function, that if , then the unique endemic equilibrium is globally stable for small WNV-induced avian mortality. Thus, in this case, WNV persists in the mosquito-bird population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号