首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Background: To analyse the post-partum concentrations of intra- and extra-cellular blood antioxidants in women with uncomplicated pregnancies.

Methods: Whole blood and plasma thiols, plasma vitamin E and C, serum cholesterol and triglyceride, ferric reducing ability of plasma (FRAP) concentrations were compared between women delivered by caesarean section (n=17) or spontaneous delivery (n=10). A repeated mixed model was used for statistical analysis.

Results: The majority of whole blood thiols increased significantly in both groups the first days post-partum. However, within the caesarean group free cysteine, oxidised cysteine, homocysteine and glutathione and plasma cysteine and homocysteine levels dropped significantly after 24 h, while FRAP levels peaked significantly in this group. Plasma vitamin E levels decreased significantly in both groups within 24 to 48 h after delivery. Independent of the way of delivery whole blood and plasma thiols were significantly increased and vitamin E levels were significantly decreased 3 months post-partum while plasma vitamin C levels and FRAP were unchanged compared to ante-partum levels.

Discussion: Decreased plasma vitamin E levels shortly post-partum are associated with decreased lipid peroxidation. The 24 h post-partum drop of some plasma and whole blood thiols in the caesarean group may be due to prolonged fasting.  相似文献   

2.
Objective: To study the evolution of lipid peroxidation, enzymatic antioxidants response, lipid profile and membrane fluidity in erythrocytes from very low birth weight (VLBW) infants during their first 7 days of extra-uterine life.

Study design: One hundred and twenty infants were selected and divided in two groups according to their weight and gestational age. Hydroperoxides, fatty-acid profile, fluidity (DPH and TMA-DPH) and catalase, SOD and GPx activities were measured in erythrocytes.

Results: VLBW group showed higher concentration of hydroperoxides and lower membrane fluidity during the first 72 h, lower SOD activity during the first 3 h and higher GPx activity during the first 7 days of life. Also, this group showed lower n-3 polyunsaturated fatty-acids percentage with respect to the term group.

Conclusion: Erythrocytes from VLBW infants showed higher oxidative damage and lower fluidity in their membranes, at least during the first 3 days of extra-uterine life, which may cause alterations in their functions and flexibility.  相似文献   

3.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2'-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

4.
1) The effect of 4-hydroxynonenal and lipid peroxidation on the activities of glucose-6-phosphatase and palmitoyl CoA hydrolase were studied.

2) 4-Hydroxynonenal inactivates glucose-6-phosphatase but has no effect on palmitoyl-CoA hydrolase. These effects are similar with those observed during lipid peroxidation of microsomes.

3) The inhibition of glucose-6-phosphatase by 4-hydroxynonenal can be prevented by glutathione but not by vitamin E. The inactivation of glucose-6-phosphatase during lipid peroxidation is prevented by glutathione and delayed by vitamin E.

4) The formation of 4-hydroxynonenal during lipid peroxidation was followed in relation to the inactivation of glucose-6-phosphatase. At 50% inactivation of glucose-6-phosphatase the 4-hydroxynonenal concentration was 1.5μM. To obtain 50% inactivation of glucose-6-phosphatase by added 4-hydroxynonenal a concentration of 150μM or 300μM was needed with a preincubation time of 30 and 60 min, respectively.

5) It is concluded that the glucose-6-phosphatase inactivation during lipid peroxidation can be due to the formation of 4-hydroxynbnenal. The formed 4-hydroxynonenal which inactivates glucose-6-phosphatase is located in the membrane. If this mechanism is valid it implies that a functional SH group of glucose-6-phosphatase is layered in the membrane. However, an inactivation of glucose-6-phosphatase by desintegration of the membrane by lipid peroxidation cannot be ruled out.  相似文献   

5.
《Free radical research》2013,47(6):485-493
Forty-five mutant male ODs rats, unable to synthesize ascorbic acid, were fed nine diets containing 5, 50 or 250 mg of vitamin E/kg diet and 150,300 or 900 mg of vitamin C/kg diet for 21 days. The concentrations of vitamins C and E increased in liver and plasma in relation to the level of these vitamins in the diet. Vitamin C dietary supplementation increased the plasma vitamin E content at low levels of vitamin E intake, supporting the concept of an in vivo synergism between both antioxidant vitamins. Vitamin C, at the dietary levels studied, did not affect the lipid peroxidation. Vitamin E decreased liver and plasma endogenous levels of thiobarbituric acid-reactive substances and liver sensitivity to non-enzymatic lipid peroxidation. This was confirmed by a highly specific assay of lipid hydroperoxides using high performance liquid chromatography with chemiluminescence detection. The hepatic concentration of both phosphatidylcholine and phosphatidylethanolamine hydroperoxides decreased as the vitamin E content of the diet increased. The results show for the first time the capacity of vitamin E to protect against peroxidation of major phospho-lipids in vivo under basal unstressed conditions.  相似文献   

6.
Heme-peroxidases, such as horseradish peroxidase (HRP), are among the most popular catalysts of low density lipoprotein (LDL) peroxidation. In this model system, a suitable oxidant such as H2O2 is required to generate the hypervalent iron species able to initiate the peroxidative chain. However, we observed that traces of hydroperoxides present in a fresh solution of linoleic acid can promote lipid peroxidation and apo B oxidation, substituting H2O2.

Spectral analysis of HRP showed that an hypervalent iron is generated in the presence of H2O2 and peroxidizing linoleic acid. Accordingly, careful reduction of the traces of linoleic acid lipid hydroperoxide prevented formation of the ferryl species in HRP and lipid peroxidation. However, when LDL was oxidized in the presence of HRP, the ferryl form of HRP was not detectable, suggesting a Fenton-like reaction as an alternative mechanism. This was supported by the observation that carbon monoxide, a ligand for the ferrous HRP, completely inhibited peroxidation of LDL.

These results are in agreement with previous studies showing that myoglobin ferryl species is not produced in the presence of phospholipid hydroperoxides, and emphasize the relevance of a Fenton-like chemistry in peroxidation of LDL and indirectly, the role of pre-existing lipid hydroperoxides.  相似文献   

7.
The storage of rabbit kidneys for 24hr at 0 C in isotonic saline resulted in significantly increased rates of lipid peroxidation, as measured by the formation of thiobarbituric acid-reactive material and Schiff bases during in vitro incubation of homogenates prepared from the cortex and medulla. In addition, the content of thiobarbituric acid-reactive material in the medulla was also significantly elevated as a result of cold storage for 24 hr.

The effects of antioxidants (vitamin E), iron-chelation (desferoxamine) and inhibitors of arachidonic acid oxidation (indomethacin and dazmegrell on the rate of lipid peroxidation in homogenates prepared from ischaemic kidneys were studied. This demonstrated that lipid peroxidation in the cortex was predominantly non-specific and iron-catalysed whereas in the medulla approximately 50% of the TBA-reactive material was formed enzymically from arachidonic acid by cyclooxygenase.  相似文献   

8.
We investigated whether vitamin E plays a role in the protection against potential free radical formation and related biochemical changes in hypoxic, ischemic and Ca2+-depleted rat heart upon normal reperfusion.

In the heart of normally fed rats a decrease in the activity of superoxide dismutase and the capacity of the glutathione system, factors of the cellular protective mechanisms against free radicals, occurred upon exposure to the above mentioned treatments. This decrease was not further enhanced if vitamin E-deficient rat hearts were treated. Vitamin E-deficiency, however, led to detectable peroxidation of lipids if Ca2+-depleted or hypoxic hearts were reperfused. Lipid peroxidation was measured as the formation of thiobarbituric acid reactive material, which is readily formed during this process. Reflow after ischemia did not induce lipid peroxidation either in normal or in vitamin E-deficient rat heart.

Since changes in Ca2+ -homeostasis are thought to be primarily responsible for the Ca2+-reperfusion injury, a role for Ca2+-ions in lipid peroxidative processes, either directly or indirectly, seems indicated. Furthermore the results imply that even a sharp and extensive decrease of reduced glutathione, as seen upon Ca2+ -repletion after a period of Ca2+ -depletion, does not necessarily induce peroxidation of lipids in heart tissue. Obviously, vitamin E is very important in the protection of cardiac membranes. Replenishment of the water-soluble protective factors in the heart seems, however, more important during above mentioned treatments, especially since repair of the vitamin E-free radical is dependent on water-soluble factors.  相似文献   

9.
Background. The dynamics of testosterone levels exhibits several cyclic patterns with various period lengths. Circadian and circannual rhythms of testosterone are known in both genders. Among infradian rhythms only the circalunar cycle in women is widely accepted. In our previous studies we have found a circatrigintan (30 days) and a circavigintan (20 days) cycle in men. Whether cyclic patterns with higher frequencies are present in the dynamics of testosterone levels in men or in women is unknown.

Aim. To analyze the infradian dynamics of salivary testosterone in both genders for the presence of cyclic patterns.

Subjects and methods. Seventeen young and healthy women and 15 men were asked to collect saliva samples during 30 consecutive days. Testosterone levels were determined using radioimmunoassay, Analysis of Rhythmic Variance II (ANORVA II) was used for statistical analysis. Potential period lengths of 3 - 15 days were evaluated.

Results. The dynamics of salivary testosterone showed high intra-individual variability in both genders (coefficient of variation - 28% in women and 26% in men). ANORVA II analysis showed no significant rhythms, although a weak circaseptan cyclic pattern has been found in women.

Discussion. Our results showed no significant infradian cyclic variation with a period between 3 and 15 days. Further studies should concentrate on potential longer periods. Described intra-individual variability of testosterone levels in both genders should be considered in endocrine research.  相似文献   

10.
This study evaluates the protective effects of thymol on altered plasma lipid peroxidation products and nonenzymic antioxidants in isoproterenol (ISO)‐induced myocardial infarcted rats. Male albino Wistar rats were pre and cotreated with thymol (7.5 mg/kg body weight) daily for 7 days. ISO (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce myocardial infarction (MI). Increased activity/levels of serum creatine kinase‐MB (CK‐MB), plasma thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes with decreased levels of plasma reduced glutathione (GSH), vitamin C, and vitamin E were observed in ISO‐induced myocardial infarcted rats. Pre and cotreatment with thymol (7.5 mg/kg body weight) showed normalized activity of serum CK‐MB and near normalized levels of plasma lipid peroxidation products, reduced GSH, vitamin C, and vitamin E in myocardial infarcted rats. Furthermore, the in vitro study on reducing power of thymol confirmed its potent antioxidant action. Thus, thymol protects ISO‐induced MI in rats by its antilipid peroxidation and antioxidant properties. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:368–373, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21431  相似文献   

11.
The objective of the study was to investigate the role of Umbelliferone (UMB) on lipid peroxidation, nonenzymic and enzymic antioxidants in the plasma and liver of streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 180-200 g, were induced diabetes by administration of STZ (40 mg/kg b.wt.) intraperitoneally. The normal and diabetic rats were treated with UMB (30 mg/kg b.wt.) dissolved in 10% dimethyl sulfoxide (DMSO) for 45 days. Diabetic rats had an elevation in the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD)), and a reduction in nonenzymic antioxidants (vitamin C and reduced glutathione (GSH) except vitamin E in the plasma and liver, and enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in the liver. Decreased level of beta-carotene and increased level of ceruloplasmin (Cp) were observed in the plasma of diabetic rats. Treatment with UMB and glibenclamide brought back lipid peroxidation markers, nonenzymic and enzymic antioxidants to near normalcy. Since UMB treatment decreases lipid peroxidation markers and enhances antioxidants' status it can be considered as a potent antioxidant.  相似文献   

12.
ω6- and ω3-unsaturated lipid hydroperoxides decompose to yield pentane and ethane, respectively. Alloxan toxicity was studied in rats in relation to pentane and ethane produced during lipid peroxidation induced by intraperitoneal injection of 20 mg of alloxan/100 g body wt. Fifteen minutes after injection, vitamin E-deficient rats exhaled 102- and 11.2-fold more pentane and ethane, respectively, than prior to injection. Injection of 75 mg ascorbic acid/100 g body wt 30 min prior to alloxan treatment prolonged the time over which peroxidation occurred and all vitamin E-deficient rats died before 4 h. Vitamin E-deficient rats injected with 100 mg of the radical scavenger mannitol/ 100 g body wt 30 min prior to alloxan treatment were completely protected against lipid peroxidation, and none of the rats died by 4 h. Rats fed 40 iu dl-α-tocopherol acetate/kg diet or injected with 100 mg dl-α-tocopherol/100 g body wt were either totally protected against alloxan and alloxan-ascorbic acid-induced peroxidation or were only slightly affected as shown by very low-level pentane and ethane production. Thiobarbituric acid reactants in plasma, liver and pancreas 4 h after alloxan treatment reflected the prooxidant nature of ascorbic acid and alloxan, the vitamin E status of the rats and the protective effect of mannitol. Plasma glucose levels 4 h after alloxan injection were lowest in vitamin E-injected rats and highest in vitamin E-deficient rats. Only in vitamin E-deficient rats were both lipid peroxidation and significantly elevated plasma glucose levels observed by 4 h post-alloxan treatment.  相似文献   

13.
Free radicals produced during hyperthermic stress and aging are thought to play an important role in the degenerative process. To investigate the correlation between oxidative damages caused by acute heat exposure or aging, and the protective effect of vitamin C in vivo, we determined the levels of oxidative protein damage, lipid peroxidation, content of endogenous ascorbic acid, and glutathione in the plasma of young and old Wistar rats, subjected or not-subjected to acute heat stress. The results showed that the level of oxidative protein damage (measured as carbonyl content) in plasma was significantly higher in elderly and in heat-exposed animals. Vitamin C treatment led to inhibition on carbonyl production much more pronounced in young heat-exposed than in aged heat-exposed rats. Aging and acute heat exposure correlated positively with increased production of lipid hydroperoxides in rats plasma, but there were no significant differences in lipid hydroperoxides levels between young and old heat-exposed rats, depending on the treatment with vitamin C. Multiple backward regression analysis showed ascorbic acid to be the only determining variable of lipid hydroperoxides levels in unexposed rats. It was concluded that aging and heat exposure instigate an increase of lipid peroxidation and protein oxidation in rat plasma, while vitamin C supplementation significantly counteracts these changes.  相似文献   

14.
The causes and consequences of ageing are likely to be complex and involve the interaction of many processes. It has been proposed that the decline in mitochondrial function caused by the accumulation of oxidatively damaged molecules plays a significant role in the ageing process. In agreement with previous reports we have shown that the activities of NADH CoQ1 reductase and cytochrome oxidase declined with increasing age in both rat liver and gastrocnemius muscle mitochondria. However, only in the liver were the changes in lipid peroxidation and membrane fluidity suggestive of an age-related increase in oxidative stress.

After 12 weeks on a vitamin E deficient diet, vitamin E levels were undetectable in both gastrocnemius muscle and liver. In skeletal muscle, this was associated with a statistically significant increase in lipid peroxidation, a decrease in cytochrome oxidase activity after 48 weeks, and an exacerbation in the age-related rate of decline of NADH CoQ1 reductase activity. This was consistent with the suggestion that an imbalance between free radical generation and antioxidant defence may contribute to the mitochondrial dysfunction with age. In contrast to this, vitamin E deficiency in the liver caused a significant increase in mitochondrial respiratory chain activities with increasing age despite evidence of increased lipid peroxidation. Comparison of other features in these samples suggested vitamin E deficiency; did not have a significant impact upon mtDNA translation; induced a compensatory increase in glutathione levels in muscle, which was less marked in the liver, but probably most interestingly caused a significant decrease in the mitochondrial membrane fluidity in muscle but not in liver mitochondria.

These data suggest that while increased lipid peroxidation exacerbated the age-related decline in muscle respiratory chain function this relationship was not observed in liver. Consequently other factors are likely to be contributing to the age-related decline in mitochondrial function and specific stimuli may influence or even reverse these age-related effects as observed with vitamin E deficiency in the liver.  相似文献   

15.
The study was undertaken to investigate the effect of sesame oil in hypertensive patients who were on antihypertensive therapy either with diuretics (hydrochlorothiazide) or ß-blockers (atenolol). Thirty-two male and 18 female patients aged 35 to 60 years old were supplied sesame oil (Idhayam gingelly oil) and instructed to use it as the only edible oil for 45 days. Blood pressure, anthropometry, lipid profile, lipid peroxidation, and enzymic and non-enzymic antioxidants were measured at baseline and after 45 days of sesame oil substitution. Substitution of sesame oil brought down systolic and diastolic blood pressure to normal. The same patients were asked to withdraw sesame oil consumption for another 45 days, and the measurements were repeated at the end of withdrawal period. Withdrawal of sesame oil substitution brought back the initial blood pressure values. A significant reduction was noted in body weight and body mass index (BMI) upon sesame oil substitution. No significant alterations were observed in lipid profile except triglycerides. Plasma levels of sodium reduced while potassium elevated upon the substitution of sesame oil. Lipid peroxidation (thiobarbituric acid reactive substances [TBARS]) decreased while the activities of superoxide dismutase (SOD), catalase (CAT), and the levels of vitamin C, vitamin E, ß-carotene, and reduced glutathione (GSH) were increased. The results suggested that sesame oil as edible oil lowered blood pressure, decreased lipid peroxidation, and increased antioxidant status in hypertensive patients.  相似文献   

16.
Background: Although cis-diamminedichloroplatinum (II) (cisplatin) is an effective anticancer agent, its clinical use is highly limited predominantly due to its adverse effects on renal functions. The present work examined the therapeutic potential of edaravone, a free radical scavenger, for inhibiting cisplatin-induced renal injury.

Methods: Edaravone, 3-methyl-1-phenyl-pyrazolin-5-one, was administrated intravenously at a dose of 30 mg/kg of body weight to male Wistar rats (200-220 g). After 30 min, cisplatin was injected intraperitoneally at a dose of 5 mg/kg of body weight. At the indicated times after the treatment, functions and histological changes of the kidney were analyzed. To test the therapeutic potential of edaravone in chemotherapy, its effect on the anticancer action of cisplatin was examined in ascites cancer-bearing rats.

Results: We found that cisplatin rapidly impaired the respiratory function and DNA of mitochondria in renal proximal tubules, thereby inducing apoptosis of tubular epithelial cells within a few days and chronic renal dysfunction associated with multiple cysts one-year after the administration. Administration of edaravone inhibited the cisplatin-induced acute injury of mitochondria and their DNA and renal epithelial cell apoptosis as well as the occurrence of chronic renal dysfunction and multiple cyst formation. The anticancer effect of cisplatin remained unaffected by intravenous administrating of edaravone.

Conclusions: These results indicate that edaravone may have therapeutic potential for inhibiting the acute and chronic injury of the kidney induced by cisplatin.  相似文献   

17.
The stimulation of non-enzymic lipid peroxidation by doxorubicin, daunorubicin and 7 derivatives was investigated in extracted microsomal phospholipids and in intact microsomes.

Evidence was obtained for the necessity of a free amino-sugar moiety for a stimulative effect on lipid peroxidation. Binding of anthracyclines to RNA (which is present in microsomes) was inhibitory towards stimulation.

Drugs that stimulated lipid peroxidation in a non-enzymic system with extracted phospholipids also were stimulative in an enzymic, NADPH-dependent, microsomal system. They were not always effective in intact microsomes without the enzymic system.

The role of the enzymic system in the stimulation of anthracycline induced lipid peroxidation is thought to be the reduction of iron ions rather than the stimulation of oxygen radical production via the anthracyclines.  相似文献   

18.
Objectives. To determine the antioxidant activities of nonsteroidal anti-inflammatory drugs (NSAIDS), we examined by chemiluminescence (CL) and electron spin resonance (ESR) their scavenging properties towards lipid peroxides, hypochlorous acid and peroxynitrite.

Methods. The antioxidant properties of nimesulide (NIM), 4-hydroxynimesulide (4-HONIM), aceclofenac (ACLO), 4-hydroxyaceclofenac (4-HOA-CLO), diclofenac (DICLO) and indomethacin (INDO) were tested on four different reactive oxygen species (ROS) generating systems: (I) phorbol-myristate acetate (PMA)-activated neutrophils, (II) Fe2+/ascorbate-induced lipid peroxidation, (III) HOCl-induced light emission, (IV) the kinetics of ONOO- decomposition followed by spectrophotometry. ROS production was monitored by luminol-enhanced CL or by ESR using two different spin traps.

Results. At 10 μM, ACLO, NIM, 4-HONIM, 4-HOA-CLO, and DICLO decreased luminol-enhanced CL generated by PMA-activated neutrophils. Inversely, INDO increased the luminol enhanced CL. Interestingly, hydroxylated metabolites were more potent antioxidants than the parent drugs. Furthermore, all drugs tested, excepted ACLO, lowered lipid peroxidation induced by Fe2+/ascorbate system. ACLO and DICLO, even at the highest concentration tested (100 μM), did not significantly lower HOCl induced CL, whereas the other drugs were potent scavengers. Finally, all the NSAIDS accelerated decomposition of ONOO-, suggesting a potential capacity of the molecules to scavenge peroxynitrite.

Conclusion. The NSAIDs possess variable degrees of antioxidant activities, linked to their ability to react with HOCl, lipid peroxides or ONOO-. These antioxidant activities could offer interesting targeted side-effects in the treatment of joint inflammatory diseases.  相似文献   

19.
Agents which induce heat shock protein synthesis in cultured monolayers of Hela cells such as hyperthermia, ethanol and sodium arsenite can also cause increases in the levels of lipid peroxidation as determined by the formation of TBA-products. The heat induced increases may be diminished by addition to the medium of mannitol or EGTA. These compounds are known to depress heat shock protein synthesis.

Following hyperthermia there is also a decrease in protein synthesis. In vitro studies indicate possible damage to ribosomes, and since the heat induced loss of protein synthetic capacity can be increased by superoxide dismutase inhibitors, and prevented by mannitol, such effects may be linked to the increases observed in lipid peroxidation. It is suggested that a connection exists between lipid peroxidation and heat shock protein gene activation.  相似文献   

20.
The purpose of this study was to investigate the potentially beneficial effects of apple cider vinegar (ACV) supplementation on serum triglycerides, total cholesterol, liver and kidney membrane lipid peroxidation, and antioxidant levels in ovariectomized (OVX) mice fed high cholesterol. Four groups of ten female mice were treated as follows: Group I received no treatment and was used as control. Group II was OVX mice. Group III received ACV intragastrically (0.6 % of feed), and group IV was OVX and was treated with ACV as described for group III. The treatment was continued for 28 days, during which the mice were fed a high-cholesterol diet. The lipid peroxidation levels in erythrocyte, liver and kidney, triglycerides, total, and VLDL cholesterol levels in serum were higher in the OVX group than in groups III and IV. The levels of vitamin E in liver, the kidney and erythrocyte glutathione peroxidase (GSH-Px), and erythrocyte-reduced glutathione (GSH) were decreased in group II. The GSH-Px, vitamin C, E, and β-carotene, and the erythrocyte GSH and GSH-Px values were higher in kidney of groups III and IV, but in liver the vitamin E and β-carotene concentrations were decreased. In conclusion, ACV induced a protective effect against erythrocyte, kidney, and liver oxidative injury, and lowered the serum lipid levels in mice fed high cholesterol, suggesting that it possesses oxidative stress scavenging effects, inhibits lipid peroxidation, and increases the levels of antioxidant enzymes and vitamin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号