首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (R)- and (S)-isomers of the male antifertility agent α-chlorohydrin have been synthesized. When administered to rats, the (R)-isomer induced a period of diuresis and glucosuria, whereas the (S)-isomer, which possesses the antifertility activity, had no detrimental action on the kidney. Neither of the isomers of α-chlorohydrin nor those of an active analogue, 3-amino-1-chloropropan-2-ol, had any inhibitory activity on the oxidative metabolism of glucose or lactate in isolated kidney tubules. However, β-chlorolactate, a metabolite common to both compounds, inhibited the oxidation of glucose, lactate, pyruvate and glutamate to CO2. It is proposed that the antifertility action of the (S)-isomers of α-chlorohydrin and 3-amino-1-chloropropan-2-ol is unrelated to the renal toxicity of the (R)-isomers, a toxic action involving the inhibition of oxidative metabolism by (S)-β-chlorolactate or a further product of this metabolite.  相似文献   

2.
In an attempt to ameliorate the morphological abnormalities and decreased renal function produced by hypoxia in the isolated perfused rat kidney, adenosine triphosphate (ATP) was added to the perfusate medium. No improvement was noted in the histological changes or renal function. Paradoxically, however, in oxygenated control kidneys, ATP (2.5-10 mM), caused a severe injury remarkably limited to the S2 segments of proximal tubule. This injury was more destructive than that observed with complete ischemia for the same period of time or with inhibitors of glycolysis, intermediary metabolism, or respiratory chain function. Tubular damage produced by ATP was paradoxically prevented by hypoxia and mitochondrial inhibition. The mechanism of this selective toxic injury to the proximal tubule remains unclear and may depend upon intact transport metabolism of the cell.  相似文献   

3.
Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R injury without the undesirable side effects of systemic A(1)AR activation by potentiating the cytoprotective effects of renal adenosine generated locally by ischemia. Pretreatment with PD-81723 produced dose-dependent protection against renal I/R injury in A(1)AR wild-type mice but not in A(1)AR-deficient mice. Significant reductions in renal tubular necrosis, neutrophil infiltration, and inflammation as well as tubular apoptosis were observed in A(1)AR wild-type mice treated with PD-81723. Furthermore, PD-81723 decreased apoptotic cell death in human proximal tubule (HK-2) cells in culture, which was attenuated by a specific A(1)AR antagonist (8-cyclopentyl-1,3-dipropylxanthine). Mechanistically, PD-81723 induced sphingosine kinase (SK)1 mRNA and protein expression in HK-2 cells and in the mouse kidney. Supporting a critical role of SK1 in A(1)AR allosteric enhancer-mediated renal protection against renal I/R injury, PD-81723 failed to protect SK1-deficient mice against renal I/R injury. Finally, proximal tubule sphingosine-1-phosphate type 1 receptors (S1P(1)Rs) are critical for PD-81723-induced renal protection, as mice selectively deficient in renal proximal tubule S1P(1)Rs (S1P(1)R(flox/flox) PEPCK(Cre/-) mice) were not protected against renal I/R injury with PD-81723 treatment. Taken together, our experiments demonstrate potent renal protection with PD-81723 against I/R injury by reducing necrosis, inflammation, and apoptosis through the induction of renal tubular SK1 and activation of proximal tubule S1P(1)Rs. Our findings imply that selectively enhancing A(1)AR activation by locally produced renal adenosine may be a clinically useful therapeutic option to attenuate ischemic acute kidney injury without systemic side effects.  相似文献   

4.
We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, high salt diet activated c-Src and induced redistribution of Na/K-ATPase and NHE3 in renal proximal tubules. In Dahl salt sensitive (S) and resistant (R) rats given high dietary salt, we found different effects on blood pressure but, more interestingly, different effects on renal salt handling. These differences could be explained by different signaling through the proximal tubular Na/K-ATPase. Specifically, in Dahl R rats, high salt diet significantly stimulated phosphorylation of c-Src and ERK1/2, reduced Na/K-ATPase activity and NHE3 activity, and caused redistribution of Na/K-ATPase and NHE3. In contrast, these adaptations were either much less effective or not seen in the Dahl S rats. We also studied the primary culture of renal proximal tubule isolated from Dahl S and R rats fed a low salt diet. In this system, ouabain induced Na/K-ATPase/c-Src signaling and redistribution of Na/K-ATPase and NHE3 in the Dahl R rats, but not in the Dahl S rats. Our data suggested that impairment of Na/K-ATPase signaling and consequent regulation of Na/K-ATPase and NHE3 in renal proximal tubule may contribute to salt-induced hypertension in the Dahl S rat.  相似文献   

5.
Uncoupling protein 3 (UCP3) expression increases dramatically in skeletal muscle under metabolic states associated with elevated lipid metabolism, yet the function of UCP3 in a physiological context remains controversial. Here, in situ mitochondrial H(2)O(2) emission and respiration were measured in permeabilized fiber bundles prepared from both rat and mouse (wild-type) gastrocnemius muscle after a single bout of exercise plus 18 h of recovery (Ex/R) that induced a approximately 2-4-fold increase in UCP3 protein. Elevated uncoupling activity (i.e. GDP inhibitable) was evident in Ex/R fibers only upon the addition of palmitate (known activator of UCP3) or under substrate conditions eliciting substantial rates of H(2)O(2) production (i.e. respiration supported by succinate or palmitoyl-L-carnitine/malate but not pyruvate/malate), indicative of UCP3 activation by endogenous reactive oxygen species. In mice completely lacking UCP3 (ucp3(-/-)), Ex/R failed to induce uncoupling activity. Surprisingly, when UCP3 activity was inhibited by GDP (rats) or in the absence of UCP3 (ucp3(-/-)), H(2)O(2) emission was significantly (p < 0.05) higher in Ex/R versus non-exercised control fibers. Collectively, these findings demonstrate that the oxidant emitting potential of mitochondria is increased in skeletal muscle during recovery from exercise, possibly as a consequence of prolonged reliance on lipid metabolism and/or altered mitochondrial biochemistry/morphology and that induction of UCP3 in vivo mediates an increase in uncoupling activity that restores mitochondrial H(2)O(2) emission to non-exercised, control levels.  相似文献   

6.
Proximal and distal tubule suspensions were prepared from kidneys of Sprague-Dawley rats by an isolation procedure on a PercollR gradient. The marker enzymes alkaline phosphatase (brush border) and hexokinase (cytoplasmic) as well as p-aminohippurate transport capacity, gluconeogenic activity and electron microscopy were used to characterize the two kidney tubule suspensions. The results of this study indicate that cytochrome P-450 is localized to the proximal tubular cells and that the O-deethylation of 7- ethoxycoumarin was higher in the proximal than distal fraction. Both proximal and distal tubules showed glucuronidation and deacetylation capacities and a relatively equal distribution of non-protein sulfhydryls. These studies demonstrate metabolic heterogeneity of the nephron, the proximal tubule being the main site of renal xenobiotic metabolism. Understanding of metabolic heterogeneity of proximal and distal kidney tubules should provide important information regarding cell specific mechanisms of nephrotoxicity.  相似文献   

7.
Mitochondrial matrix cyclophilin D (CyPD) is known to promote development of the mitochondrial permeability transition (MPT). Kidney proximal tubule cells are especially prone to deleterious effects of mitochondrial damage because of their dependence on oxidative mitochondrial metabolism for ATP production. To clarify the role of CyPD and the MPT in proximal tubule injury during ischemia-reperfusion (I/R) and hypoxia-reoxygenation (H/R), we assessed freshly isolated tubules and in vivo injury in wild-type (WT) and Ppif(-/-) CyPD-null mice. Isolated mouse tubules developed a sustained, nonesterified fatty acid-mediated energetic deficit after H/R in vitro that could be substantially reversed by delipidated albumin and supplemental citric acid cycle substrates but was not modified by the absence of CyPD. Susceptibility of WT and Ppif(-/-) tubules to the MPT was increased by H/R but was less in normoxic and H/R Ppif(-/-) than WT tubules. Correction of the energetic deficit that developed during H/R strongly increased resistance to the MPT. Ppif(-/-) mice were resistant to I/R injury in vivo spanning a wide range of severity. The data clarify involvement of the MPT in oxygen deprivation-induced tubule cell injury by showing that the MPT does not contribute to the initial bioenergetic deficit produced by H/R but the deficit predisposes to subsequent development of the MPT, which contributes pathogenically to kidney I/R injury in vivo.  相似文献   

8.
High albumin concentrations in the proximal tubule of the kidney causes tubulointerstitial injury, but how this process occurs is not completely known. To address the signal transduction pathways mis-regulated in renal injury, we studied the modulation of mammalian target of rapamycin (mTOR) complexes by physiologic and pathophysiologic albumin concentrations in proximal tubule cells. Physiologic albumin concentrations activated the PI3K/mTORC2/PKB/mTORC1/S6 kinase (S6K) pathway, but pathophysiologically high albumin concentrations overactivated mTORC1 and inhibited mTORC2 activity. This control process involved the activation of ERK1/2, which promoted the inhibition of TSC2 and activation of S6K. Furthermore, S6K was crucial to promoting the over activation of mTORC1 and inhibition of mTORC2. Megalin expression at the luminal membrane is reduced by high concentrations of albumin. In addition, knockdown of megalin mimicked all the effects of pathophysiologic albumin concentrations, which disrupt normal signal transduction pathways and lead to an overactivation of mTORC1 and inhibition of mTORC2. These data provide new perspectives for understanding the molecular mechanisms behind the effects of albumin on the progression of renal disease.  相似文献   

9.
3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.  相似文献   

10.
Proximal-rich tubules were prepared from rat kidneys by using collagenase treatment. The isolated rat renal tubules were compared with the intact kidney on the following characteristics. (1) Composition of the sulfoglycolipid. (2) Sulfoglycolipid metabolism based on incorporation of [35S]sulfate or some properties of sulfoglycolipid metabolism, including the activities of anabolic and catabolic enzymes. The results indicated following characteristics of the isolated renal tubules in comparison to the kidney in vivo. (1) The sulfoglycolipid compositions are qualitatively similar, except that the content of glucosyl sulfatide, Gg3Cer II3-sulfate, and GM4 was slightly higher in the isolated tubules. (2) The apparent half-lives (15-55 min) of sulfoglycolipids in the isolated tubules could indicate the existence of a rapid turnover pool of these lipids. (3) The sulfotransferase and sulfatase activities related to sulfoamphiphiles in the renal tubule were similar to those reported for the whole kidney. Based on the above criteria, we conclude that the isolated rat renal tubule should be a useful metabolic system for clarification of the short-term physiological events, up to 90 min, of proximal tubular sulfoglycolipids. By using the present system, we showed that biosynthesis of the renal total sulfoglycolipid was significantly elevated in rats deprived of water for 24 h.  相似文献   

11.
The renal and cardiac benefits of renin-angiotensin system (RAS) inhibition in hypertension exceed those attributable to blood pressure reduction, and seem to involve mitochondrial function changes. To investigate whether mitochondrial changes associated with RAS inhibition are related to changes in nitric oxide (NO) metabolism, four groups of male Wistar rats were treated during 2 wk with a RAS inhibitor, enalapril (10 mg x kg(-1) x day(-1); Enal), or a NO synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME) (1 mg x kg(-1) x day(-1)), or both (Enal+L-NAME), or were untreated (control). Blood pressure and body weight were lower in Enal than in control. Electron transfer through complexes I to III and cytochrome oxidase activity were significantly lower, and uncoupling protein-2 content was significantly higher in kidney mitochondria isolated from Enal than in those from control. All of these changes were prevented by L-NAME cotreatment and were accompanied by a higher production/bioavailability of kidney NO. L-NAME abolished mitochondrial NOS activity but failed to inhibit extra-mitochondrial kidney NOS, underscoring the relevance of mitochondrial NO in those effects of enalapril that were suppressed by L-NAME cotreatment. In Enal, kidney mitochondria H(2)O(2) production rate and MnSOD activity were significantly lower than in control, and these effects were not prevented by L-NAME cotreatment. These findings may clarify the role of NO in the interactions between RAS and mitochondrial metabolism and can help to unravel the mechanisms involved in renal protection by RAS inhibitors.  相似文献   

12.
13.
Conversion of circulating 25-hydroxyvitamin D3 (25(OH)D3) to its active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) occurs in the renal tubule mitochondrion. Recent reports have implicated the cytoskeleton in certain other steroid metabolizing cells as a mediator of a rate-limiting mitochondrial transport step. Whilst the activity of the renal converting enzyme, a typical steroid hydroxylase, is known to be regulated closely by a number of well studied factors, no information is available to indicate whether an analogous transport step is relevant to the regulation of vitamin D metabolism. Cytochalasin B and vinblastine were used as chemical antagonists of the microfilamentous and microtubular elements of the cytoskeleton. Both agents inhibited the conversion of 25(OH)D3 to 1,25(OH)2D3 by isolated vitamin D-deficient chick renal tubules in a dose-dependent manner. At the concentrations required to inhibit 25(OH)D3-1 alpha-hydroxylase activity in whole cells, these agents inhibited neither isolated mitochondrial 1,25(OH)2D3 production, nor 24,25(OH)2D3 synthesis by vitamin D-replete tubules. The cytoskeletal antagonists were found to increase the content of labelled 1,25(OH)2D3 and 25(OH)D3 in a mitochondrial fraction prepared by Percoll fractionation of tubule cells pre-exposed to the antagonists and labelled 25(OH)D3 substrate. The data suggest that disruption of the cytoskeleton may result in inhibition of transport of newly synthesised 1,25(OH)2D3 out of the mitochondrion and through the cell, and accumulating 1,25(OH)2D3 may oppose its further synthesis. This is consistent with a transport process mediated by the cytoskeleton being involved in the regulation of renal vitamin D metabolism.  相似文献   

14.
Carbon flux through tricarboxylic acid cycle in rat renal tubules   总被引:1,自引:0,他引:1  
Our aim was to delineate the effect(s) of chronic metabolic acidosis on renal TCA-cycle metabolism. Renal tubules isolated from control and chronically acidotic rats were incubated at pH 7.4 with either 2 mM [2,3-13C]pyruvate or [2-13C]acetate. GC-MS and/or 13C-NMR were utilized to monitor the flux of 13C through pyruvate dehydrogenase, pyruvate carboxylase and the TCA-cycle. With either, precursor acidosis was associated with significantly decreased formation of 13C-labelled citrate, malate, aspartate and alanine and increased formation of glucose, lactate and acetyl-CoA as compared with the control. The results indicate that adaptation of renal metabolism to chronic metabolic acidosis is associated with diminished flux through citrate synthetase and concomitantly increased flux through pyruvate carboxylase. The data suggest that depletion of TCA-cycle intermediates and enhanced ammoniagenesis in the kidney of chronically acidotic rats may be regulated at the site of mitochondrial citrate-condensing enzyme.  相似文献   

15.
Phosphaturia is a prominent component of the renal Fanconi syndrome associated with the autosomal recessive disease, hereditary tyrosinemia. Succinylacetone (SA), the metabolic by-product of the enzyme deficiency, can be shown to produce multiple adverse effects on rat renal epithelial cell function in vitro. With the use of this compound, we have examined its interaction with Pi handling by the renal tubule cell in order to form a basis for understanding the effects of endogenously generated SA in causing phosphaturia in the genetically affected kidney. In this report we have shown complete inhibition of sodium-dependent phosphate uptake by renal brush border membrane vesicles, decreased ATP production by the SA-exposed renal tubule, and reversible inhibition of State 3 oxidation of glutamate by isolated renal mitochondria. We conclude that the phosphaturia observed in hereditary tyrosinemia results from multiple metabolic effects of SA on the renal tubule which are additive and lead to intracellular Pi depletion and diminished ATP production.  相似文献   

16.
17.
The role of mitofusin 2 (MFN2), a key regulator of mitochondrial morphology and function in the renal stress response is unknown. To assess its role, the MFN2 floxed gene was conditionally deleted in the kidney of mice (MFN2 cKO) by Pax2 promoter driven Cre expression (Pax2Cre). MFN2 cKO caused severe mitochondrial fragmentation in renal epithelial cells that are critical for normal kidney tubular function. However, despite a small (20%) decrease in nephron number, newborn cKO pups had organ or tubular function that did not differ from littermate Cre-negative pups. MFN2 deficiency in proximal tubule epithelial cells in primary culture induced mitochondrial fragmentation but did not significantly alter ATP turnover, maximal mitochondrial oxidative reserve capacity, or the low level of oxygen consumption during cyanide exposure. MFN2 deficiency also did not increase apoptosis of tubule epithelial cells under non-stress conditions. In contrast, metabolic stress caused by ATP depletion exacerbated mitochondrial outer membrane injury and increased apoptosis by 80% in MFN2 deficient vs. control cells. Despite similar stress-induced Bax 6A7 epitope exposure in MFN2 deficient and control cells, MFN2 deficiency significantly increased mitochondrial Bax accumulation and was associated with greater release of both apoptosis inducing factor and cytochrome c. In conclusion, MFN2 deficiency in the kidney causes mitochondrial fragmentation but does not affect kidney or tubular function during development or under non-stress conditions. However, MFN2 deficiency exacerbates renal epithelial cell injury by promoting Bax-mediated mitochondrial outer membrane injury and apoptosis.  相似文献   

18.
Membrane-associated carbonic anhydrase (CA) has a crucial role in renal HCO(3)(-) absorption. CA activity has been localized to both luminal and basolateral membranes of the tubule epithelial cells. CA XII is a transmembrane isoenzyme that has been demonstrated in the basolateral plasma membrane of human renal, intestinal, and reproductive epithelia. The present study was designed to demonstrate the distribution of CA XII expression in the rodent kidney. A new polyclonal antibody to recombinant mouse CA XII was used in both Western blotting and immunohistochemistry. Western blotting analysis revealed a 40-45-kD polypeptide in CA XII-expressing CHO cells and isolated membranes of mouse and rat kidney. Immunofluorescence staining localized CA XII in the basolateral plasma membranes of S1 and S2 proximal tubule segments. Abundant basolateral staining of CA XII was seen in a subpopulation of cells in both cortical and medullary collecting ducts. Double immunofluorescence staining identified these cells as H(+)-secreting type A intercalated cells. The localization of CA XII in the peritubular space of proximal tubules suggests that it may play a role in renal HCO(3)(-) absorption, whereas the function of CA XII in the type A intercalated cells needs further investigation.  相似文献   

19.
Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-alpha-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-alpha-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3beta or an uninhibitable mutant GSK3beta, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3beta) in HKC. Overexpression of wild type GSK3beta did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3beta abolished HGF inhibition of basal and TNF-alpha stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3beta are required for HGF-induced suppression of RANTES in HKC.  相似文献   

20.
Fatal immune complex glomerulonephritis can be induced in rats by chronic intravenous administration of bovine serum albumin. There are three distinct stages, mild, moderate, and severe, in the development of renal immunopathology and pathophysiology in this model of chronic serum sickness. The work described here was undertaken to evaluate aspects of proximal tubule function in those different stages. Tissue water distribution, oxidative metabolism, and transport of representative organic anions and cations were measured in renal cortical slices. In mild chronic serum sickness all functions were normal except the transport of p-aminohippurate (PAH, organic anion), which was significantly decreased. This decrease appeared to be attributable to immunization with Freund's adjuvant. In the moderate stage of chronic serum sickness, proximal tubule functions and morphology appeared essentially normal. Only Na-K-ATPase activity was somewhat lower than in controls. However, proximal tubule dysfunction was a feature of severe chronic serum sickness. A significant inhibition of anion and cation transport was observed. Reduction in transport functions occurred together with impaired oxidative metabolism and severe reduction in Na-K-ATPase activity. Abnormalities of mitochondrial structure, a decrease in number of mitochondria, and a significant increase in intracellular H2O content provided additional evidence of degenerative changes in proximal tubule cells during the severe stage of chronic serum sickness. It was concluded that decreased transport of organic ions by the basolateral membrane in proximal tubules of rats with severe chronic serum sickness resulted from a breakdown in the metabolic machinery of the tubule epithelium rather than a specific injury to organic ion transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号