首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly selective base-pair recognition makes DNA a suitable building block for orderly self-assembled structures. For some applications in nanotechnology DNA complexes need to be fixed onto surfaces. To fulfil this requirement on lipid membranes we have synthesised a thymidine monomer modified with a cholesterol moiety. Solution studies show that the melting temperature (Tm) of the duplex, with adjacent cholesterols on each strand, is much higher than that of the unmodified duplex.  相似文献   

2.
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue in the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation.  相似文献   

3.
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue into the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of the unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

4.
5.
The synthesis, binding and fluorescence properties of oligonucleotides containing the uridine modified at the 2'-position by a pyrene group using different length of linker arm have been described. It is demonstrated that the oligonucleotides possessing a C3-amide group at the 2'-position display an enhanced signal of the pyrene monomer fluorescence upon binding to DNA segments.  相似文献   

6.
Positron emission tomography (PET) is a highly sensitive quantitative imaging technique for studying molecular pathways and interactions in vivo. This imaging technique plays a key role in drug discovery, pharmacokinetics, pharmacodynamics, and assessing in vivo distribution. In this study, we designed an ethynylbenzene-substituted glycol (ME) as a versatile probe for PET labeling of oligonucleotides through a click reaction.  相似文献   

7.
New methods to synthesize 2'-O-methyl-2-thiouridine and its phosphoramidite building block for incorporation into oligonucleotides were developed. Oligonucleotides containing 2'-O-methyl-2-thiouridine were expected to be favorable as antisense agents in several respects, i.e., nuclease resistance, stable RNA duplex formation, and exact base recognition. Therefore, to make them clear, we synthesized oligonucleotides having 2'-O-methyl-2-thiouridine and analyzed their properties in detail.  相似文献   

8.
The preparation of oligonucleotides containing 8-bromo-2'-deoxyguanosine is described. Substitution of G by 8-bromoguanine on an alternating CG decamer stabilizes the Z-form in such a way that the B-form was not observed. Melting temperatures showed that duplexes in which 8-bromo-2'-deoxyguanosine paired with natural bases were much less stable.  相似文献   

9.
The preparation of synthetic oligonucleotides containing 2'-deoxynebularine (dN) and 2'-deoxyxanthosine (dX) is described. The thermal stabilities of duplexes containing dX, dN, and 2'-deoxyinosine (dI) base-paired with the four natural bases have been measured. Xanthine base pairs have stabilities at pH 5.5 that are similar to those of dI-containing duplexes at neutral pH. When xanthine is paired with adenine or cytosine an unusual stabilization of the duplex structure is observed at acid pH. Incorporation of base mispairs opposite template xanthine sites were measured using Drosophila DNA polymerase alpha. The relative nucleoside incorporation rates are in the order: T greater than C much greater than A approximately equal to G. These rates do not correlate with relative thermodynamic stabilities of base mispairs with xanthine obtained from Tm measurements: T greater than G greater than A approximately equal to C. We suggest that DNA polymerase misinsertion rates are greatest when the base mispair can be formed in accordance with Watson-Crick as opposed to other base pairing geometries even though other geometries, e.g. wobble, may result in a more stable final DNA product.  相似文献   

10.
Novel, potent inhibitors of aminopeptidase P, containing a 3-amino-2-hydroxy acid and a proline or a proline analogues, have been prepared. One part of the bestatin-derived inhibitors was found to inhibit APP from Escherichia coli and from rat intestine according to a mixed-type mechanism, with Ki values up to 1.26 microM. The other compounds, 3-amino-2-hydroxy acyl prolines of a different configuration, inhibit APP competitively, according to a slow-binding mechanism, with Ki values in the nanomolar up to the micromolar range.  相似文献   

11.
A versatile, general way is described for the introduction of different functional groups into oligonucleotides by means of a simple linker at the 2'-position of the sugar. Nucleotide building blocks carrying lipophilic, intercalating or tertiary amino groups can be placed deliberately at any desired position of oligonucleotides by standard automated oligonucleotide synthesis. Thermal denaturation studies with these oligonucleotides reveal the following general trends: i) Modification with lipophilic n-octyl groups has little if any effect on duplex stability; a destabilizing (lipophilic) substituent is better tolerated at or near the ends than in the middle of the oligo. ii) An intercalating substituent (2-aminoanthraquinone) substantially increases duplex stability. iii) N,N-Dimethyl amino residues also increase duplex stability though to a smaller extent than intercalating residues. iv) Modifications at the 5'-end have a more pronounced influence on the TM than the corresponding 3'-modifications. v) Oligonucleotides modified in such a way show little or no loss in sequence specificity.  相似文献   

12.
Oligonucleotides carrying 2'-aldehyde groups were synthesized and coupled to peptides containing an N-terminal cysteine, aminooxy or hydrazide group to give peptide-oligonucleotide conjugates in good yield. The synthesis of a novel phosphoramidite reagent for the incorporation of 2'-O-(2,3-diaminopropyl)uridine into oligonucleotides was also described. Resultant 2'-diaminooligonucleotides may be useful intermediates in further peptide conjugation studies.  相似文献   

13.
A series of 2'-C-methyl branched purine and pyrimidine C-nucleosides were prepared. Their anti-HCV activity and pharmacological properties were profiled, and compared with known 2'-C-Me N-nucleoside counterparts. In particular, 2'-C-Me 4-aza-7,9-dideazaadenosine C-nucleoside (2) was found to have potent and selective anti-HCV activity in vitro as well as a favorable pharmacokinetic profile and in vivo potential for enhanced potency over the corresponding N-nucleoside.  相似文献   

14.
The serine protease urokinase (uPa) has been implicated in the progression of both breast and prostate cancer. Utilizing structure based design, the synthesis of a series of substituted 4-[2-amino-1,3-thiazolyl]-thiophene-2-carboxamidines is described. Further optimization of this series by substitution of the terminal amine yielded urokinase inhibitors with excellent activities.  相似文献   

15.
(E)- and (Z)-3-Ferrocenylmethylidene-1,3-dihydro-2H-indol-2-ones 1 have been structurally modified in order to explore SAR against a range of kinases. Of note is the submicromolar to low micromolar inhibition of DYRK3 and 4 by a number of complexes. Screening using Xenopus embryos showed some of the compounds to have potent antiangiogenisis activity.  相似文献   

16.
Oligodeoxyribonucleotides containing pseudorotationally locked sites derived from bicyclo[3.1.0]hexane pseudosugars have been synthesized using adenosine, thymidine and abasic versions of North- and South-methanocarba nucleosides. The reaction conditions for coupling and oxidation steps of oligonucleotide synthesis have been investigated and optimized to allow efficient and facile solid-phase synthesis using phosphoramidite chemistry. Our studies demonstrate that the use of iodine for P(III) to P(V) oxidation leads to strand cleavage at the sites where the pseudosugar is North. In contrast, the same cleavage reaction was not observed in the case of South pseudosugars. Iodine oxidation generates a 5′-phosphate oligonucleotide fragment on the resin and releases the North pseudosugar into the solution. This side reaction, which is responsible for the extremely low yields observed for the incorporation of the North pseudosugar analogs, has been studied in detail and can be easily overcome by replacing iodine with t-butylhydroperoxide as oxidant.  相似文献   

17.
A series of water soluble N(1)- and C(6)-substituted uracil pyridinium compounds were prepared as potential inhibitors of thymidine phosphorylase (TP). The C(6)-uracil substituted derivatives were the most active. 1-[(5-Chloro-2,4-dihydroxypyrimidin-6-yl)methyl]pyridinium chloride, was identified as the best inhibitor being 5-fold more potent than the known inhibitor, 6-amino-5-bromouracil.  相似文献   

18.
Procedures are described for synthesis via solid support methodology of oligonucleotide analogues derived in part from 3'-amino-3'-deoxythymidine or 5'-amino-5'-deoxythymidine. Oligothymidylate decamers terminated with a 3'-amino group or containing a 3'-NHP(O)(O-)O-5' internucleoside link are found to form unusually stable complexes with poly(dA), poly(A), and oligo(dA). For related derivatives of 5'-amino-5'-deoxythymidine enhancement is less or absent, and in the case of multiple substitution destabilization of the heteroduplex may be observed. That the effect of the 3'-amino group is general for oligonucleotide derivatives is indicated by enhanced Tm values for heteroduplex complexes of the mixed-base oligomer, d(TATTCAGTCAT(NH2)), and the methyl phosphonate derivatives, TmTmTmTmTmTmTmTmTmT(NH2) and d(TmAmTmTmCmAmGmTmCmAmT(NH2)).  相似文献   

19.
Novel thymidine dimers containing hydroxamate linkages were synthesized, incorporated into oligonucleotide sequences and studied their hybridization properties against complementary DNA and RNA targets.  相似文献   

20.
Mitochondrial DNA is exposed to oxygen radicals produced during oxidative phosphorylation. Accumulation of several kinds of oxidative lesions in mitochondrial DNA may lead to structural genomic alterations, mitochondrial dysfunction, and associated degenerative diseases. The pyrimidine hydrate thymine glycol, one of many oxidative lesions, can block DNA and RNA polymerases and thereby exert negative biological effects. Mitochondrial DNA repair of this lesion is important to ensure normal mitochondrial DNA metabolism. Here, we report the purification of a novel rat liver mitochondrial thymine glycol endonuclease (mtTGendo). By using a radiolabeled oligonucleotide duplex containing a single thymine glycol lesion, damage-specific incision at the modified thymine was observed upon incubation with mitochondrial protein extracts. After purification using cation exchange, hydrophobic interaction, and size exclusion chromatography, the most pure active fractions contained a single band of approximately 37 kDa on a silver-stained gel. MtTGendo is active within a broad KCl concentration range and is EDTA-resistant. Furthermore, mtTGendo has an associated apurinic/apyrimidinic-lyase activity. MtTGendo does not incise 8-oxodeoxyguanosine or uracil-containing duplexes or thymine glycol in single-stranded DNA. Based upon functional similarity, we conclude that mtTGendo may be a rat mitochondrial homolog of the Escherichia coli endonuclease III protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号