首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Trimethylamine dehydrogenases from bacterium W3A1 and Hyphomicrobium X and the dimethylamine dehydrogenase from Hyphomicrobium X were found to contain only one kind of subunit. The millimolar absorption coefficient of a single [4Fe-4S] cluster in trimethylamine dehydrogenase from bacterium W3A1 was estimated to be 14.8 mM-1 . cm-1 at 443 nm. From this value a 1:1 stoicheiometry of the prosthetic groups, 6-S-cysteinyl-FMN and the [4Fe-4S] cluster, was established. Millimolar absorption coefficients of the three enzymes were in the range 49.4-58.7 mM-1 . cm-1 at approx. 440 nm. This range of values is consistent with the presence of two [4Fe-4S] clusters and two flavin residues, for which the millimolar absorption coefficient had earlier been found to be 12.3 mM-1 . cm-1 at 437 nm. The N-terminal amino acid was alanine in each of the three enzymes. Sequence analysis of the first 15 residues from the N-terminus of dimethylamine dehydrogenase indicated a single unique sequence. Two identical subunits, each containing covalently bound 6-S-cysteinyl-FMN and a [4Fe-4S] cluster, in each of the enzymes are therefore indicated.  相似文献   

4.
Thiomonas arsenitoxydans is an acidophilic and facultatively autotrophic bacterium that can grow by oxidizing arsenite to arsenate. A comparative genomic analysis showed that the T. arsenitoxydans aioBA cluster encoding the two subunits of arsenite oxidase is distinct from the other clusters, with two specific genes encoding a cytochrome c and a metalloregulator belonging to the ArsR/SmtB family. These genes are cotranscribed with aioBA, suggesting that these cytochromes c are involved in arsenite oxidation and that this operon is controlled by the metalloregulator. The growth of T. arsenitoxydans in the presence of thiosulfate and arsenite, or arsenate, is biphasic. Real-time PCR experiments showed that the operon is transcribed during the second growth phase in the presence of arsenite or arsenate, whereas antimonite had no effect. These results suggest that the expression of the aioBA operon of T. arsenitoxydans is regulated by the electron donor present in the medium, i.e., is induced in the presence of arsenic but is repressed by more energetic substrates. Our data indicate that the genetic organization and regulation of the aioBA operon of T. arsenitoxydans differ from those of the other arsenite oxidizers.  相似文献   

5.
The genetic locus encoding the periplasmic [NiFe]hydrogenase (Hyd) from Desulfovibrio fructosovorans was cloned and sequenced. The genes of this two-subunit enzyme have an operon organization in which the 0.94-kb gene encoding the small subunit precedes the 1.69-kb gene encoding the large subunit. A Shine-Dalgarno sequence is centered at -9 bp from the ATG of both subunits. The possible presence of another open reading frame downstream from the large-subunit-encoding gene is considered. The N-terminal sequence of the large 61-kDa subunit deduced from the nucleotide sequence is in perfect agreement with the results of the amino acid (aa) sequence determined by Edman degradation. A 50-aa leader peptide precedes the small 28-kDa subunit. The aa sequence of the enzyme shows nearly 65% homology with the [NiFe]Hyd aa sequence of Desulfovibrio gigas. Comparisons with a large range of Hyds from various bacterial species indicate the presence of highly conserved Cys residues, the implications of which are discussed from the point of view of nickel atom and cluster accommodation.  相似文献   

6.
The hyperthermophilic bacterium, Thermotoga maritima, grows up to 90 degrees C by fermenting carbohydrates and it disposes of excess reductant by H(2) production. The H(2)-evolving cytoplasmic hydrogenase of this organism was shown to consist of three different subunits of masses 73 (alpha), 68 (beta) and 19 (gamma) kDa and to contain iron as the only metal. The genes encoding the subunits were clustered in a single operon in the order hydC (gamma), hydB (beta), and hydA (alpha). Sequence analyses indicated that: (a) the enzyme is an Fe-S-cluster-containing flavoprotein which uses NADH as an electron donor; and (b) the catalytic Fe-S cluster resides within the alpha-subunit, which is equivalent to the single subunit that constitutes most mesophilic Fe-hydrogenases. The alpha- and beta-subunits of the purified enzyme were separated by chromatography in the presence of 4 M urea. As predicted, the H(2)-dependent methyl viologen reduction activity of the holoenzyme (45-70 U mg(-1)) was retained in the alpha-subunit (130-160 U mg(-1)) after subunit separation. However, the holoenzyme did not contain flavin and neither it nor the alpha-subunit used NAD(P)(H) or T. maritima ferredoxin as an electron carrier. The holoenzyme, but not the alpha-subunit, reduced anthraquinone-2,6-disulfonate (apparent K(m), 690 microM) with H(2). The EPR properties of the reduced holoenzyme, when compared with those of the separated and reduced subunits, indicate the presence of a catalytic 'H-cluster' and three [4Fe-4S] and one [2Fe-2S] cluster in the alpha-subunit, together with one [4Fe-4S] and two [2Fe-2S] clusters in the beta-subunit. Sequence analyses predict that the alpha-subunit should contain an additional [2Fe-2S] cluster, while the beta-subunit should contain one [2Fe-2S] and three [4Fe-4S] clusters. The latter cluster contents are consistent with the measured Fe contents of about 32, 20 and 14 Fe mol(-1) for the holoenzyme and the alpha- and beta-subunits, respectively. The T. maritima enzyme is the first 'complex' Fe-hydrogenase to be purified and characterized, although the reason for its complexity remains unclear.  相似文献   

7.
The hndABCD operon from Desulfovibrio fructosovorans encodes an uncommon heterotetrameric NADP-reducing iron hydrogenase. The presence of a [2Fe-2S] cluster likely located in the C-terminal region of the HndA subunit has already been revealed. We have cloned and expressed the truncated hndA gene in Escherichia coli to isolate the structural [2Fe-2S] module. Optical and EPR spectra are found identical to that of the native HndA subunit and the midpoint redox potential (-385 mV) is similar to that of the native protein (-395 mV). These results clearly demonstrate that the C-terminal region of HndA is a structurally independent [2Fe2S] ferredoxin-like domain. In the same way, the N-terminal domain of the HndD subunit was overproduced in E. coli and characterized. The presence of a [2Fe-2S] cluster was evidenced by optical spectroscopy. The midpoint redox potential (-380 mV) of this domain was found very close to that of the truncated HndA subunit but the EPR properties were significantly different. The various EPR properties allowed us to observe an electron exchange between the two [2Fe-2S] ferredoxin-like domains of the HndA and HndD subunits. Moreover, domain-domain interactions, observed by far-western experiments, indicate that these subunits are direct partners in the native complex.  相似文献   

8.
The subunit location of the [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters in Escherichia coli fumarate reductase has been investigated by EPR studies of whole cells or whole cells extracts of a fumarate reductase deletion mutant with plasmid amplified expression of discrete fumarate reductase subunits or groups of subunits. The results indicate that both the [2Fe-2S] and [3Fe-4S] clusters are located entirely in the iron-sulfur protein subunit. Information concerning the specific cysteine residues that ligate these clusters has been obtained by investigating the EPR characteristics of cells of the deletion mutant amplified with a plasmid coding for the flavoprotein subunit and a truncated iron-sulfur protein subunit. While the results are not definitive with respect to the location of the [4Fe-4S] cluster, they are most readily interpreted in terms of this cluster being entirely in the flavoprotein subunit or bridging between the two catalytic domain subunits. These new results are discussed in light of the amino acid sequences of the two subunits and the sequences of structurally well characterized iron-sulfur proteins containing [2Fe-2S], [3Fe-4S], and [4Fe-4S] centers.  相似文献   

9.
The genome of Pyrococcus furiosus contains the putative mbhABCDEFGHIJKLMN operon for a 14-subunit transmembrane complex associated with a Ni-Fe hydrogenase. Ten ORFs (mbhA-I and mbhM) encode hydrophobic, membrane-spanning subunits. Four ORFs (mbhJKL and mbhN) encode putative soluble proteins. Two of these correspond to the canonical small and large subunit of Ni-Fe hydrogenase, however, the small subunit can coordinate only a single iron-sulfur cluster, corresponding to the proximal [4Fe-4S] cubane. The structural genes for the small and the large subunits, mbhJ and mbhL, are separated in the genome by a third ORF, mbhK, encoding a protein of unknown function without Fe/S binding. The fourth ORF, mbhN, encodes a 2[4Fe-4S] protein. With P. furiosus soluble [4Fe-4S] ferredoxin as the electron donor the membranes produce H2, and this activity is retained in an extracted core complex of the mbh operon when solubilized and partially purified under mild conditions. The properties of this membrane-bound hydrogenase are unique. It is rather resistant to inhibition by carbon monoxide. It also exhibits an extremely high ratio of H2 evolution to H2 uptake activity compared with other hydrogenases. The activity is sensitive to inhibition by dicyclohexylcarbodiimide, an inhibitor of NADH dehydrogenase (complex I). EPR of the reduced core complex is characteristic for interacting iron-sulfur clusters with Em approximately -0.33 V. The genome contains a second putative operon, mbxABCDFGHH'MJKLN, for a multisubunit transmembrane complex with strong homology to the mbh operon, however, with a highly unusual putative binding motif for the Ni-Fe-cluster in the large hydrogenase subunit. Kinetic studies of membrane-bound hydrogenase, soluble hydrogenase and sulfide dehydrogenase activities allow the formulation of a comprehensive working hypothesis of H2 metabolism in P. furiosus in terms of three pools of reducing equivalents (ferredoxin, NADPH, H2) connected by devices for transduction, transfer, recovery and safety-valving of energy.  相似文献   

10.
Azospirillum brasilense glutamate synthase (GltS) is a complex iron-sulfur flavoprotein whose catalytically active alphabeta protomer (alpha subunit, 162kDa; beta subunit, 52.3 kDa) contains one FAD, one FMN, one [3Fe-4S](0,+1), and two [4Fe-4S](+1,+2) clusters. The structure of the alpha subunit has been determined providing information on the mechanism of ammonia transfer from L-glutamine to 2-oxoglutarate through a 30 A-long intramolecular tunnel. On the contrary, details of the electron transfer pathway from NADPH to the postulated 2-iminoglutarate intermediate through the enzyme flavin co-factors and [Fe-S] clusters are largely indirect. To identify the location and role of each one of the GltS [4Fe-4S] clusters, we individually substituted the four cysteinyl residues forming the first of two conserved C-rich regions at the N-terminus of GltS beta subunit with alanyl residues. The engineered genes encoding the beta subunit variants (and derivatives carrying C-terminal His6-tags) were co-expressed with the wild-type alpha subunit gene. In all cases the C/A substitutions prevented alpha and beta subunits association to yield the GltS alphabeta protomer. This result is consistent with the fact that these residues are responsible for the formation of glutamate synthase [4Fe-4S](+1,+2) clusters within the N-terminal region of the beta subunit, and that these clusters are implicated not only in electron transfer between the GltS flavins, but also in alphabeta heterodimer formation by structuring an N-terminal [Fe-S] beta subunit interface subdomain, as suggested by the three-dimensional structure of dihydropyrimidine dehydrogenase, an enzyme containing an N-terminal beta subunit-like domain.  相似文献   

11.
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
13.
The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed.  相似文献   

14.
BACKGROUND: Arsenite oxidase from Alcaligenes faecalis NCIB 8687 is a molybdenum/iron protein involved in the detoxification of arsenic. It is induced by the presence of AsO(2-) (arsenite) and functions to oxidize As(III)O(2-), which binds to essential sulfhydryl groups of proteins and dithiols, to the relatively less toxic As(V)O(4)(3-) (arsenate) prior to methylation. RESULTS: Using a combination of multiple isomorphous replacement with anomalous scattering (MIRAS) and multiple-wavelength anomalous dispersion (MAD) methods, the crystal structure of arsenite oxidase was determined to 2.03 A in a P2(1) crystal form with two molecules in the asymmetric unit and to 1.64 A in a P1 crystal form with four molecules in the asymmetric unit. Arsenite oxidase consists of a large subunit of 825 residues and a small subunit of approximately 134 residues. The large subunit contains a Mo site, consisting of a Mo atom bound to two pterin cofactors, and a [3Fe-4S] cluster. The small subunit contains a Rieske-type [2Fe-2S] site. CONCLUSIONS: The large subunit of arsenite oxidase is similar to other members of the dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes, particularly the dissimilatory periplasmic nitrate reductase from Desulfovibrio desulfuricans, but is unique in having no covalent bond between the polypeptide and the Mo atom. The small subunit has no counterpart among known Mo protein structures but is homologous to the Rieske [2Fe-2S] protein domain of the cytochrome bc(1) and cytochrome b(6)f complexes and to the Rieske domain of naphthalene 1,2-dioxygenase.  相似文献   

15.
16.
17.
Analysis of the genome of the hyperthermophilic bacterium Aquifex aeolicus has revealed the presence of a previously undetected gene potentially encoding a plant- and mammalian-type [2Fe-2S] ferredoxin. Expression of that gene in Escherichia coli has yielded a novel thermostable [2Fe-2S] ferredoxin (designated ferredoxin 5) whose sequence is most similar to those of ferredoxins involved in the assembly of iron-sulfur clusters (Isc-Fd). It nevertheless differs from the latter proteins by having deletions near its N- and C-termini, and no cysteine residues other than those involved in [2Fe-2S] cluster coordination. Resonance Raman, low-temperature MCD and EPR studies show close spectral similarities between ferredoxin 5 and the Isc-Fd from Azotobacter vinelandii. M?ssbauer spectra of the reduced protein were analyzed with an S = 1/2 spin Hamiltonian and interpreted in the framework of the ligand field model proposed by Bertrand and Gayda. The redox potential of A. aeolicus ferredoxin 5 (-390 mV) is in keeping with its relatedness to Isc-Fd. Unfolding experiments showed that A. aeolicus ferredoxin 5 is highly thermostable (T(m) = 106 degrees C at pH 7), despite being devoid of features (e.g., high content of charged residues) usually associated with extreme thermal stability. Searches for genes potentially encoding plant-type [2Fe-2S] ferredoxins have been performed on the sequenced genomes of hyperthermophilic organisms. None other than the two proteins from A. aeolicus were retrieved, indicating that this otherwise widely distributed group of proteins is barely represented among hyperthermophiles.  相似文献   

18.
Methylosulfonomonas methylovora M2 is an unusual gram-negative methylotrophic bacterium that can grow on methanesulfonic acid (MSA) as the sole source of carbon and energy. Oxidation of MSA by this bacterium is carried out by a multicomponent MSA monooxygenase (MSAMO). Cloning and sequencing of a 7.5-kbp SphI fragment of chromosomal DNA revealed four tightly linked genes encoding this novel monooxygenase. Analysis of the deduced MSAMO polypeptide sequences indicated that the enzyme contains a two-component hydroxylase of the mononuclear-iron-center type. The large subunit of the hydroxylase, MsmA (48 kDa), contains a typical Rieske-type [2Fe-2S] center with an unusual iron-binding motif and, together with the small subunit of the hydroxylase, MsmB (20 kDa), showed a high degree of identity with a number of dioxygenase enzymes. However, the other components of the MSAMO, MsmC, the ferredoxin component, and MsmD, the reductase, more closely resemble those found in other classes of oxygenases. MsmC has a high degree of identity to ferredoxins from toluene and methane monooxygenases, which are enzymes characterized by possessing hydroxylases containing mu-oxo bridge binuclear iron centers. MsmD is a reductase of 38 kDa with a typical chloroplast-like [2Fe-2S] center and conserved flavin adenine dinucleotide- and NAD-binding motifs and is similar to a number of mono- and dioxygenase reductase components. Preliminary analysis of the genes encoding MSAMO from a marine MSA-degrading bacterium, Marinosulfonomonas methylotropha, revealed the presence of msm genes highly related to those found in Methylosulfonomonas, suggesting that MSAMO is a novel type of oxygenase that may be conserved in all MSA-utilizing bacteria.  相似文献   

19.
A hydrogenase operon was cloned from chromosomal DNA isolated from Desulfovibrio vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes that for the large subunit (566 residues; molecular mass = 62495 Da), as in other [NiFe] and [NiFeSe] hydrogenase operons. The amino acid sequences of the small and large subunits of the Miyazaki hydrogenase share 80% homology with those of the [NiFe] hydrogenase from Desulfovibrio gigas. Fourteen cysteine residues, ten in the small and four in the large subunit, which are thought to co-ordinate the iron-sulphur clusters and the active-site nickel in [NiFe] hydrogenases, are found to be conserved in the Miyazaki hydrogenase. The subunit molecular masses and amino acid composition derived from the gene sequence are very similar to the data reported for the periplasmic, membrane-bound hydrogenase isolated by Yagi and coworkers, suggesting that this hydrogenase belongs to the general class of [NiFe] hydrogenases, despite its low nickel content and apparently anomalous spectral properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号