首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of membrane splitting on transmembrane polypeptides   总被引:1,自引:0,他引:1       下载免费PDF全文
We investigated the effect of membrane splitting on the primary structure of human erythrocyte membrane polypeptides. Monolayers of intact, chemically unmodified cells were freeze-fractured and examined by one-dimensional SDS PAGE. Silver-stained gels revealed all major polypeptides that stain with Coomassie Blue as well as all bands that stain with periodic acid Schiff's reagent. Both nonglycosylated and glycosylated membrane polypeptides could be detected at concentrations of only a few nanograms per band. Membrane splitting had no effect on the position or number of bands. Monolayers of intact erythrocytes that had been enzymatically radioiodinated with lactoperoxidase were examined by electrophoresis, fluorography, and liquid scintillation counting. Radioactivity was quantified before and after monolayer formation and splitting, and at several stages of gel staining, drying, and fluorography. Although overexposed fluorographs revealed several minor radioiodinated bands in addition to band 3 and the glycophorins, no new bands were detected in split membrane samples derived from intact cells. These observations support the conclusion that neither the band 3 anion channel nor the glycophorin sialoglycoproteins are fragmented during freeze-fracturing. Although both band 3 and glycophorin partition to the cytoplasmic side of the membrane, preliminary quantitative observations suggest an enrichment of glycophorin in the split extracellular "half" membrane. We conclude that the process of membrane splitting by planar monolayer freeze-fracture does not cleave the covalent polypeptide backbone of any erythrocyte membrane protein, peripheral or integral.  相似文献   

2.
Phosphorylation sites in human erythrocyte band 3 protein   总被引:6,自引:0,他引:6  
The human red cell anion-exchanger, band 3 protein, is one of the main phosphorylated proteins of the erythrocyte membrane. Previous studies from this laboratory have shown that ATP-depletion of the red blood cell decreased the anion-exchange rate, suggesting that band 3 protein phosphorylation could be involved in the regulation of anion transport function (Bursaux et al. (1984) Biochim. Biophys. Acta 777, 253-260). Phosphorylation occurs mainly on the cytoplasmic domain of the protein and the major site of phosphorylation was assigned to tyrosine-8 (Dekowski et al. (1983) J. Biol. Chem. 258, 2750-2753). This site being very far from the integral, anion-exchanger domain, the aim of the present study was to determine whether phosphorylation sites exist in the integral domain. The phosphorylation reaction was carried out on isolated membranes in the presence of [gamma-32P]ATP and phosphorylated band 3 protein was then isolated. Both the cytoplasmic and the membrane spanning domains were purified. The predominant phosphorylation sites were found on the cytoplasmic domain. RP-HPLC analyses of the tryptic peptides of whole band 3 protein, and of the isolated cytoplasmic and membrane-spanning domains allowed for the precise localization of the phosphorylated residues. 80% of the label was found in the N-terminal tryptic peptide (T-1), (residues 1-56). In this region, all the residues susceptible to phosphorylation were labeled but in varying proportion. Under our conditions, the most active membrane kinase was a tyrosine kinase, activated preferentially by Mn2+ but also by Mg2+. Tyrosine-8 was the main phosphate acceptor residue (50-70%) of the protein, tyrosine-21 and tyrosine-46 residues were also phosphorylated but to a much lesser extent. The main targets of membrane casein kinase, preferentially activated by Mg2+, were serine-29, serine-50, and threonine(s)-39, -42, -44, -48, -49, -54 residue(s) located in the T-1 peptide. A tyrosine phosphatase activity was copurified with whole band 3 protein which dephosphorylates specifically P-Tyr-8, indicating a highly exchangeable phosphate. The membrane-spanning fragment was only faintly labeled.  相似文献   

3.
Plasma membrane preparations from lymphocytes, platelets and red cells were phosphorylated in the presence of [gamma-32 P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase increased the 32P-labelling of proteins and polyphosphoinositides in lymphocyte, platelet and in some red cell membranes. In the majority of red cell membrane preparations the 32P-labelling of proteins and polyphosphoinositides seemed to be stimulated by the catalytic subunit of the endogenous protein kinase, since the phosphorylation was not increased by the addition of the catalytic subunit but it was decreased by the heat-stable inhibitor protein of the protein kinase. Different sets of 32P-labelled proteins were shown by SDS-gel electrophoresis in the membranes of the 3 cell types. A 24000-Mr protein was the only one which was phosphorylated by the catalytic subunit in each membrane.  相似文献   

4.
Diacylglycerol plays a critical role in transmembrane signaling by activating protein kinase C (PKC). The tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) mimics that action, and in the human erythrocyte, TPA-activated PKC phosphorylates membrane proteins. Although molecular aspects of this process have been investigated, details of the interaction of TPA with plasma membranes remain elusive. Because TPA is hydrophobic, it has been assumed that it associates with the lipid bilayer. However, there is no direct evidence for its transbilayer distribution. Because knowledge of its location would limit molecular models proposed to explain its mode of action, we have used membrane-splitting techniques, based on freeze-fracture of planar cell monolayers, to quantify transmembrane partitioning of [3H]TPA. Under conditions where PKC-mediated phosphorylation was stimulated by [3H]TPA and where more than 90% of the [3H]TPA was associated with the human red cell plasma membrane, two-thirds of the TPA partitioned with the cytoplasmic leaflet after bilayer splitting. This represents the first direct topographic localization of TPA in a biological membrane and supports the hypothesis that the mechanism of TPA activation requires its association with the cytoplasmic leaflet of the bilayer.  相似文献   

5.
The interleukin-2 (IL-2) receptor, the leukocyte-specific membrane glycoprotein, T200, and the class I major histocompatibility antigens (HLA) have been identified as substrates for protein kinase C in vitro. IL-2 receptors on normal human T lymphocytes and the leukemic cell line, HUT102B2, are rapidly phosphorylated in vivo in response to the tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Tryptic peptide analysis showed that the in vitro and in vivo 32P-labeled IL-2 receptors were phosphorylated on the same sites. A synthetic peptide corresponding to the carboxyl-terminal cytoplasmic tail of the IL-2 receptor was shown to be phosphorylated in vitro by protein kinase C. Tryptic digestion of the peptide generated the same 32P-labeled species as those found for the IL-2 receptor. From these studies, it was concluded that Ser-247 is the major site of phosphorylation in the IL-2 receptor and that Thr-250 is a minor site. These results also provide direct evidence that the in vivo phosphorylation of the IL-2 receptor stimulated by TPA is catalyzed by protein kinase C. The sites phosphorylated in the HLA antigens in vitro by protein kinase C or in vivo after TPA stimulation were also localized to the carboxyl-terminal cytoplasmic domain of the heavy chain by limited proteolysis.  相似文献   

6.
The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.  相似文献   

7.
We have studied the effects of band 4.1 phosphorylation on its association with red cell inside-out vesicles stripped of all peripheral proteins. Band 4.1 bound to these vesicles in a saturable manner, and binding was characterized by a linear Scatchard plot with an apparent Kd of 1-2 x 10(-7) M. Phosphorylation of band 4.1 by purified protein kinase C reduced its ability to bind to membranes, resulting in a reduction in the apparent binding capacity of the membrane by 60-70% but little or no change in the apparent Kd of binding. By contrast, phosphorylation of band 4.1 by cAMP-dependent kinase had no effect on membrane binding. Digestion of the stripped inside-out vesicles with trypsin cleaved 100% of the cytoplasmic domain of band 3 but had little or no effect on glycophorin. Binding of band 4.1 to these digested vesicles was reduced by 70%. Phosphorylation of band 4.1 by protein kinase C had no effect on its binding to the digested vesicles, suggesting that the cytoplasmic domain of band 3 contained the phosphorylation-sensitive binding sites. This was confirmed by direct measurement of band 4.1 binding to the purified cytoplasmic domain of band 3. Phosphorylation of band 4.1 by protein kinase C reduced its binding to the purified 43-kDa domain by as much as 90%, while phosphorylation by cAMP-dependent kinase was without effect. These results show a selective effect of protein kinase C phosphorylation on the binding of band 4.1 to one of its membrane receptors, band 3, and suggest a mechanism whereby one of the key red cell-skeletal membrane associations may be modulated.  相似文献   

8.
A detergent extract isolated from the enriched fraction of integral membrane proteins of Jurkat cells showed an enhanced tyrosine phosphate level when phosphorylated in the presence of phorbol 12-myristate 13-acetate (TPA) and phorbol 12,13-dibutyrate (PDBu). The enhanced tyrosine phosphorylation was observed when the reaction time exceeded 6 min; at shorter incubation times, however, TPA inhibited tyrosine phosphorylation. When the reaction proceeded for a constant time period longer than 6 min and phorbol esters were added at different times after the start of the reaction, two phases of an enhanced tyrosine phosphorylation of a 50 kDa protein were observed. An increased phosphorylation of the 50 kDa protein was correlated with an enhanced phosphorylation of poly(Glu4,Tyr1). The two phases of enhanced phosphorylation differed in their TPA and PDBu requirement and in the proteins that were tyrosine phosphorylated. Studies with protein kinase C (PKC) inhibitors showed a negatively correlated effect on the enhanced tyrosine phosphorylation in phase I; tyrosine phosphorylation was further augmented. In phase II the regulation of tyrosine phosphorylation correlated with the efficiency of the PKC inhibitors on the alpha-isoform of PKC which was found in the cell extract. Separation of the proteins present in the investigated cell extract by gel filtration revealed a co-migration of the alpha-PKC and the 50 kDa protein. The metabolic labeling of intact Jurkat cells with 32Pi indicated that phorbol esters are also able to induce tyrosine phosphorylation of the 50 kDa protein underin vivo conditions. These data suggest an activation of two different tyrosine phosphorylation pathways by phorbol esters involving tyrosine phosphorylation/autophosphorylation of a 50 kDa kinase, as confirmed by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) labeling, that are accurately regulated by alpha-PKC.  相似文献   

9.
We have examined the associations of purified red cell band 4.2 with red cell membrane and membrane skeletal proteins using in vitro binding assays. Band 4.2 bound to the purified cytoplasmic domain of band 3 with a Kd between 2 and 8 X 10(-7) M. Binding was saturable and slow, requiring 2-4 h to reach equilibrium. This finding confirms previous work suggesting that the principal membrane-binding site for band 4.2 lies within the 43-kDa cytoplasmic domain of band 3 (Korsgren, C., and Cohen, C. M. (1986) J. Biol. Chem. 261, 5536-5543). Band 4.2 also bound to purified ankyrin in solution with a Kd between 1 and 3.5 X 10(-7) M. As with the cytoplasmic domain of band 3, binding was saturable and required 4-5 h to reach equilibrium. Reconstitution with ankyrin of inside-out vesicles stripped of all peripheral proteins had no effect upon band 4.2 binding to membranes; similarly, reconstitution with band 4.2 had no effect upon ankyrin binding. This shows that ankyrin and band 4.2 bind to distinct loci within the 43-kDa band 3 cytoplasmic domain. Coincubation of ankyrin and band 4.2 in solution partially blocked the binding of both proteins to the membrane. Similarly, coincubation of bands 4.1 and 4.2 in solution partially blocked binding of both to membranes. In all cases, the data suggest the possibility that domains on each of these proteins responsible for low affinity membrane binding are principally affected. The data also provide evidence for an association of band 4.2 with band 4.1. Our results show that band 4.2 can form multiple associations with red cell membrane proteins and may therefore play an as yet unrecognized structural role on the membrane.  相似文献   

10.
Phosphorylation of membrane proteins is one of the earliest steps in cell activation induced by growth-promoting agents. Since MHC (major histocompatibility complex) class I molecules are known to contain phosphorylation sites in their C-terminal intracellular domain, we have studied the regulation of HLA (human leucocyte antigen) phosphorylation in intact cells by two mitogens, namely TPA (12-O-tetradecanoylphorbol 13-acetate), a phorbol ester, and insulin, which are thought to exert their mitogenic effects through the stimulation of different protein kinases (protein kinase C and a tyrosine kinase respectively). Human B lymphoblastoid cells (526 cell line) were pulsed with [32P]Pi to label the intracellular ATP pool. Cells were then stimulated for 10 min with TPA, insulin, cyclic AMP or EGF (epidermal growth factor). The reaction was stopped by cell lysis in the presence of kinase and phosphatase inhibitors, and class I HLA antigens were immunoprecipitated with monoclonal antibodies. Analysis of labelled proteins by gel electrophoresis and autoradiography revealed that TPA increased the phosphorylation of the 45 kDa class I heavy chain by 5-7-fold, and insulin increased it by 2-3-fold. Cyclic AMP and EGF had no stimulatory effect. Analysis of immunoprecipitated HLA molecules by two-dimensional gel electrophoresis showed that TPA and insulin stimulated the incorporation of 32P into different 45 kDa molecular species, suggesting that different sites were phosphorylated by two agents. Moreover, incubation of purified class I MHC antigens with partially purified insulin-receptor tyrosine kinase and [gamma-32P]ATP revealed that class I antigens could also be phosphorylated in vitro by this tyrosine kinase. Altogether, these results therefore confirm that insulin receptors and HLA class I molecules are not only structurally [Fehlmann, Peyron, Samson, Van Obberghen, Brandenburg & Brossette (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8634-8637] but also functionally associated in the membranes of intact cells.  相似文献   

11.
When highly purified myelin from rat sciatic nerve was incubated with [gamma-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [gamma-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3',5'-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing. From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

12.
ABSTRACT. Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or γ-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.  相似文献   

13.
When highly purified myelin from rat sciatic nerve was incubated with [γ-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [γ-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3′,5′-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing.From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

14.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

15.
Following brief synaptic stimulation, the bag cell neurons in the abdominal ganglion of Aplysia undergo a series of changes in electrophysiological and secretory properties that triggers egg laying behavior. Activation of protein kinase C appears to play an important role in these changes and, in particular, causes the unmasking of a new species of voltage-dependent calcium channel. We have now used isolated bag cell neurons maintained in cell culture to study changes in protein phosphorylation that are induced by exposure to an activator of protein kinase C. Primary cultures of bag cell neurons were labeled with 32P orthophosphate and then incubated with either tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C, or with an inactive phorbol ester. When protein extracts were separated with 2D electrophoresis approximately 100 phosphoproteins could be distinguished. Only four of these proteins, with molecular weights of 20, 32, 200, and 250 kD, underwent a reproducible increase in the extent of phosphorylation of at least twofold in response to TPA. TPA-induced changes in phosphate incorporation were blocked by pretreatment with the protein kinase C inhibitor H7. One of the TPA-regulated phosphoproteins was localized in a plasma membrane-containing fraction and was sensitive to trypsin treatment of intact cells, suggesting that it is a membrane protein with sites exposed to the extracellular medium. Two of the other TPA-regulated phosphoproteins may be associated with the inner face of the plasma membrane. Our results indicate that only a small number of proteins undergo a major change in phosphorylation state following the activation of protein kinase C in isolated bag cell neurons. One or more of these proteins may contribute to the unmasking of the calcium channels.  相似文献   

16.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

17.
The phosphorylation of spectrin polypeptide 2 is thought to be involved in the metabolically dependent regulation of red cell shape and deformability. Spectrin phosphorylation is not affected by cAMP. The reaction in isolated membranes resembles the cAMP-independent, salt-stimulated phosphorylation of an exogenous substrate, casein, by enzyme(s) present both in isolated membranes and cytoplasmic extracts. Spectrin kinase is selectively eluted from membranes by 0.5 M NaCl and co-fractionates with eluted casein kinase. Phosphorylation of band 3 in the membrane is inhibited by salt, but the band 3 kinase is otherwise indistinguishable operationally from spectrin kinase. The membrane-bound casein (spectrin) kinase is not eluted efficiently with spectrin at low ionic strength; about 80% of the activity is apparently bound at sites (perhaps on or near band 3) other than spectrin. Partitioning of casein kinase between cytoplasm and membrane is metabolically dependent; the proportion of casein kinase on the membrane can range from 25% to 75%, but for fresh cells is normally about 40%. Dephosphorylation of phosphorylated spectrin has not been studied intensively. Slow release of 32Pi from [32P] spectrin on the membrane can be demonstrated, but phosphatase activity measured against solubilized [32P] spectrin is concentrated in the cytoplasm. The crude cytoplasmic phosphospectrin phosphatase is inhibited by various anions – notably, ATP and 2,3-DPG at physiological concentrations. Regulation of spectrin phosphorylation in intact cells has not been studied. We speculate that spectrin phosphorylation state may be regulated (1) by metabolic intermediates and other internal chemical signals that modulate kinase and phosphatase activities per se or determine their intracellular localization and (2) by membrane deformation that alters enzyme–spectrin interaction locally. Progress in the isolation and characterization of spectrin kinase and phosphospectrin phosphatase should lead to the resolution of major questions raised by previous work: the relationships between membrane-bound and cytoplasmic forms of the enzymes, the nature of their physical interactions with the membrane, and the regulation of their activities in defined cell-free systems.  相似文献   

18.
Band 3 tyrosine kinase. Association with the human erythrocyte membrane   总被引:1,自引:0,他引:1  
Band 3, the anion transport protein of the human erythrocyte membrane, is known to be phosphorylated in ghosts at tyrosine 8. The band 3 tyrosine kinase is now shown to be associated with the Triton X-100 insoluble membrane skeleton but not with spectrin or actin. The kinase was reversibly dissociated from membranes and skeletons at elevated ionic strength (50% at mu = 0.15). The binding capacity of the membranes exceeded their native complement of the kinase by at least 60-fold. Prior removal of all peripheral proteins from the cytoplasmic surface of inside-out vesicles did not diminish the rebinding of the kinase, whereas prior removal of band 3 and other accessory proteins from skeletons abolished the rebinding of the kinase. An excess of glyceraldehyde-3-P dehydrogenase, which binds to band 3 in the region of the phosphate acceptor tyrosine 8, both inhibited the phosphorylation of band 3 and released the kinase into solution. Soluble 40/45-kDa chymotryptic fragments from the cytoplasmic pole of band 3 were phosphorylated at least as well as membranous band 3 and caused the release of the kinase from Triton-extracted skeletons. Membrane skeletons lacked most of the membrane band 3, but retained most of the kinase. Nevertheless, the band 3 population solubilized by Triton X-100 from prelabeled ghosts was as well phosphorylated as the population of band 3 retained by the skeletons. Furthermore, the fraction of band 3 not associated with the skeletons following Triton X-100 extraction was a good substrate for the solubilized kinase. We conclude that this tyrosine kinase is reversibly bound to the membrane through electrostatic interactions with the polyacidic sequence surrounding the phosphate accepting tyrosine 8 on band 3. The kinase appears to be preferentially linked to those band 3 molecules associated with the membrane skeleton, but it impartially phosphorylates band 3 species free in the bilayer as well as band 3 fragments in solution. The resemblance of its plasma membrane binding behavior to that of tyrosine kinases of certain viruses causing oncogenic transformation is discussed.  相似文献   

19.
The lamin B receptor (LBR) is an integral protein of the inner nuclear membrane that interacts with lamin B in vitro. If contains a 204-amino acid nucleoplasmic amino-terminal domain and a hydrophobic carboxyl-terminal domain with eight putative transmembrane segments. We found cell cycle-dependent phosphorylation of LBR using phosphoamino acid analysis and phosphopeptide mapping of in vivo 32P-labeled LBR immunoprecipitated from chicken cells in interphase and arrested in mitosis. LBR was phosphorylated only on serine residues in interphase and on serine and threonine residues in mitosis. Some serine residues phosphorylated in interphase were not phosphorylated in mitosis. To identify a threonine residue specifically phosphorylated in mitosis and the responsible protein kinase, wild-type and mutant LBR nucleoplasmic domain fusion proteins were phosphorylated in vitro by p34cdc2-type protein kinase. Comparisons of phosphopeptide maps to those of in vivo 32P-labeled mitotic LBR showed that Thr188 is likely to be phosphorylated by this enzyme during mitosis. These phosphorylation/dephosphorylation events may be responsible for some of the changes in the interaction between the nuclear lamina and the inner nuclear membrane that occur during mitosis.  相似文献   

20.
The effects of adenosine 3':5'-monophosphate (cyclic AMP) on the phosphorylation of membrane proteins in intact rabbit and human erythrocytes were investigated. The addition of cyclic AMP to intact human or rabbit erythrocytes results in an increase in the incorporation of ortho[32P]phosphate into several membrane protein components which are known to serve as substrates for the cyclic-AMP-dependent protein kinases. Thus this increase in protein phsophorylation is probably due to the activation of either soluble or membrane-bound cyclic-AMP-dependent protein kinases. Incubation of human erythrocytes in the presence of ortho [32P]phosphate and cyclic AMP also leads to the phosphorylation of a membrane protein component, band 7, which has not been previously detected in the autophosphorylation of isolated ghosts. Since rabbit erythrocyte membranes do not contain any cyclic-AMP-dependent protein kinase, the results suggest that cytoplasmic kinases also play a role in the phosphorylation of membrane proteins in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号