首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
MiRNAs are non-coding RNAs that play a role in the regulation of major processes. The inhibition of miRNAs using antisense oligonucleotides (ASOs) is a unique and effective technique for the characterization and subsequent therapeutic targeting of miRNA function. Recent advances in ASO chemistry have been used to increase both the resistance to nucleases and the target affinity and specificity of these ASOs. Peptide nucleic acids (PNAs) are artificial oligonucleotides constructed on a peptide-like backbone. PNAs have a stronger affinity and greater specificity to DNA or RNA than natural nucleic acids and are resistant to nucleases, which is an essential characteristic for a miRNA inhibitor that will be exposed to serum and cellular nucleases. For increasing cell penetration, PNAs were conjugated with cell penetrating peptides (CPPs) at N-terminal. Among the tested CPPs, Tat-modified peptide-conjugated PNAs have most effective function for miRNA inhibition. PNA-based ASO was more effective miRNA inhibitor than other DNA-based ASOs and did not show cytotoxicity at concentration up to 1,000 nM. The effects of PNA-based ASOs were shown to persist for 9 days. Also, PNA-based ASOs showed considerable stability at storage temperature. These results suggest that PNA-based ASOs are more effective ASOs of miRNA than DNA-based ASOs and PNA-based ASO technology, compared with other technologies used to inhibit miRNA activity can be an effective tool for investigating miRNA functions.  相似文献   

2.
Chemically modified antisense oligonucleotides (ASOs) are widely used as a tool to functionalize microRNAs (miRNAs). Reduction of miRNA level after ASO inhibition is commonly reported to show efficacy. Whether this is the most relevant endpoint for measuring miRNA inhibition has not been adequately addressed in the field although it has important implications for evaluating miRNA targeting studies. Using a novel approach to quantitate miRNA levels in the presence of excess ASO, we have discovered that the outcome of miRNA inhibition can vary depending on the chemical modification of the ASO. Although some miRNA inhibitors cause a decrease in mature miRNA levels, we have identified a novel 2′-fluoro/2′-methoxyethyl modified ASO motif with dramatically improved in vivo potency which does not. These studies show there are multiple mechanisms of miRNA inhibition by ASOs and that evaluation of secondary endpoints is crucial for interpreting miRNA inhibition studies.  相似文献   

3.
Among the multitude of chemical modifications that have been described over the past two decades, oligonucleotide analogs that are modified at the 2'-position of the furanose sugar have been especially useful for improving the drug-like properties of antisense oligonucleotides (ASOs). These modifications bias the sugar pucker towards the 3'-endo-conformation and improve ASO affinity for its biological target (i.e., mRNA). In addition, antisense drugs incorporating 2'-modified nucleotides exhibit enhanced metabolic stability, and improved pharmacokinetic and toxicological properties. Further conformational restriction of the 2'-substituent to the 4'-position of the furanose ring yielded the 2',4'-bridged nucleic acid (BNA) analogs. ASOs containing BNA modifications showed unprecedented increase in binding affinity for target RNA, while also improved nuclease resistance, in vitro and in vivo potency. Several ASO drug candidates containing 2'-modified nucleotides have entered clinical trials and continue to make progress in the clinic for a variety of therapeutic indications.  相似文献   

4.
The PS modification enhances the nuclease stability and protein binding properties of gapmer antisense oligonucleotides (ASOs) and is one of very few modifications that support RNaseH1 activity. We evaluated the effect of introducing stereorandom and chiral mesyl-phosphoramidate (MsPA) linkages in the DNA gap and flanks of gapmer PS ASOs and characterized the effect of these linkages on RNA-binding, nuclease stability, protein binding, pro-inflammatory profile, antisense activity and toxicity in cells and in mice. We show that all PS linkages in a gapmer ASO can be replaced with MsPA without compromising chemical stability and RNA binding affinity but these designs reduced activity. However, replacing up to 5 PS in the gap with MsPA was well tolerated and replacing specific PS linkages at appropriate locations was able to greatly reduce both immune stimulation and cytotoxicity. The improved nuclease stability of MsPA over PS translated to significant improvement in the duration of ASO action in mice which was comparable to that of enhanced stabilized siRNA designs. Our work highlights the combination of PS and MsPA linkages as a next generation chemical platform for identifying ASO drugs with improved potency and therapeutic index, reduced pro-inflammatory effects and extended duration of effect.  相似文献   

5.
miRNAs are key regulators of various biological processes. Dysregulation of miRNA is linked to many diseases. Development of miRNA inhibitor has implication in disease therapy and study of miRNA function. The biogenesis pathway of miRNA involves the processing of pre-miRNA into mature miRNA by Dicer enzyme. We previously reported a proximity enabled approach that employs bifunctional small molecules to regulate miRNA maturation through inhibiting the enzymatic activity of Dicer. By conjugating to an RNA targeting unit, an RNase inhibitor could be delivered to the cleavage site of specific pre-miRNA to deactivate the complexed Dicer enzyme. Herein, we expanded this bifunctional strategy by showing that antisense oligonucleotides (ASOs), including morpholinos and γPNAs, could be readily used as the RNA recognition unit to generate bifunctional small molecule-oligonucleotide hybrids as miRNA inhibitors. A systematic comparison revealed that the potency of these hybrids is mainly determined by the RNA binding of the targeting ASO molecules. Since the lengths of the ASO molecules used in this approach were much shorter than commonly used anti-miRNA ASOs, this may provide benefits to the specificity and cellular delivery of these hybrids. We expect that this approach could be complementary to traditional ASO and small molecule based miRNA inhibition and contribute to the study of miRNA.  相似文献   

6.
It has been shown that siRNAs can compete with each other or with endogenous miRNAs for RISC components. This competition may complicate the interpretations of phenotypes observed through siRNA-mediated knockdown of genes, especially those genes implicated in the RISC pathway. In this study, we re-examined the function of RNA helicase A (RHA), which has been previously proposed to function in RISC loading based on siRNA-mediated knockdown studies. Here we show that reduced RISC activity or loading of siRNAs was observed only in cells depleted of RHA using siRNA, but not using RNaseH-dependent antisense oligonucleotides (ASOs), suggesting that the impaired RISC function stems from the competition between pre-existing and newly transfected siRNAs, but not from reduction of the RHA protein. This view is further supported by the findings that cells depleted of a control protein, NCL1, using siRNA, but not ASO, exhibited similar defects on the loading and activity of a subsequently transfected siRNA. Transfection of RHA or NCL1 siRNAs, but not ASOs, reduced the levels of endogenous miRNAs, suggesting a competition mechanism. As a positive control, we showed that reduction of MOV10 by either siRNA or ASO decreased siRNA activity, confirming its role in RISC function. Together, our results indicate that RHA is not required for RISC activity or loading, and suggest that proper controls are required when using siRNAs to functionalize genes to avoid competition effects.  相似文献   

7.
Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms.  相似文献   

8.
9.
miRNAs are ∼22-nt RNAs that bind to the Argonaute family of proteins and have important regulatory roles in plants and animals. Here, we show that miRNAs exhibit targeting activity in cells when delivered as single strands that are 5′-phosphorylated and that contain 2′-fluoro ribose modifications. Length preferences, chemical modification sensitivity, and genome-wide seed-based targeting all suggest that this activity is Ago-based. Activity could be enhanced by annealing of segmented passenger strands containing non-nucleic acid spacers. Furthermore, screening of randomly generated sequences identified pyrimidine rich 3′ cassette sequences that increased single strand activity. These results provide an initial step in the development of single-stranded miRNA mimics for therapeutic use.  相似文献   

10.
11.
12.
microRNAs (miRNAs) are a new class of non-protein-coding small RNAs, which regulate the expression of more than 30% protein-coding genes. The unique expression profiles of different miRNAs in different types of cancers and at different stages in one cancer type suggest that miRNAs can function as novel biomarkers for disease diagnostics and may present a new strategy for miRNA gene therapy. Anti-miRNAs and antisense oligonucleotides (ASO) have been employed to inhibit specific miRNA expression in vitro and in vivo for investigational and clinical purposes. Although miRNA-based diagnostics and gene therapy are still in their infancy, their huge potentials will meet our need for future disease diagnostics and gene therapy. High efficient delivery of miRNAs into targeted sites, designing accurate anti-miRNA/ASOs, and related biosafety issues are three major challenges in this field.  相似文献   

13.
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting   总被引:21,自引:0,他引:21  
Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in reduced plasma cholesterol levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic fatty-acid and cholesterol synthesis rates. Activation of the central metabolic sensor AMPK was also increased. miR-122 inhibition in a diet-induced obesity mouse model resulted in decreased plasma cholesterol levels and a significant improvement in liver steatosis, accompanied by reductions in several lipogenic genes. These results implicate miR-122 as a key regulator of cholesterol and fatty-acid metabolism in the adult liver and suggest that miR-122 may be an attractive therapeutic target for metabolic disease.  相似文献   

14.
Wu H  Ma H  Ye C  Ramirez D  Chen S  Montoya J  Shankar P  Wang XA  Manjunath N 《PloS one》2011,6(12):e28580
siRNA (small interfering RNA) and shRNA (small hairpin RNA) are powerful and commonly used tools in biomedical research. Currently, siRNAs are generally designed as two 21 nt strands of RNA that include a 19 nt completely complementary part and a 2 nt overhang. However, since the si/shRNAs use the endogenous miRNA machinery for gene silencing and the miRNAs are generally 22 nt in length and contain multiple internal mismatches, we tested if the functionality can be increased by designing the si/shRNAs to mimic a miRNA structure. We systematically investigated the effect of single or multiple mismatches introduced in the passenger strand at different positions on siRNA functionality. Mismatches at certain positions could significantly increase the functionality of siRNAs and also, in some cases decreased the unwanted passenger strand functionality. The same strategy could also be used to design shRNAs. Finally, we showed that both si and miRNA structured oligos (siRNA with or without mismatches in the passenger strand) can repress targets in all individual Ago containing cells, suggesting that the Ago proteins do not differentiate between si/miRNA-based structure for silencing activity.  相似文献   

15.
16.
A series of antisense oligonucleotides (ASOs) containing either 2′-O-methoxyethylribose (MOE) or locked nucleic acid (LNA) modifications were designed to investigate whether LNA antisense oligonucleotides (ASOs) have the potential to improve upon MOE based ASO therapeutics. Some, but not all, LNA containing oligonucleotides increased potency for reducing target mRNA in mouse liver up to 5-fold relative to the corresponding MOE containing ASOs. However, they also showed profound hepatotoxicity as measured by serum transaminases, organ weights and body weights. This toxicity was evident for multiple sequences targeting three different biological targets, as well as in mismatch control sequences having no known mRNA targets. Histopathological evaluation of tissues from LNA treated animals confirmed the hepatocellular involvement. Toxicity was observed as early as 4 days after a single administration. In contrast, the corresponding MOE ASOs showed no evidence for toxicity while maintaining the ability to reduce target mRNA. These studies suggest that while LNA ASOs have the potential to improve potency, they impose a significant risk of hepatotoxicity.  相似文献   

17.
Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties.  相似文献   

18.
MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massive-scale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.  相似文献   

19.
MicroRNA-143 regulates adipocyte differentiation   总被引:46,自引:0,他引:46  
MicroRNAs (miRNAs) are endogenously expressed 20-24 nucleotide RNAs thought to repress protein translation through binding to a target mRNA (1-3). Only a few of the more than 250 predicted human miRNAs have been assigned any biological function. In an effort to uncover miRNAs important during adipocyte differentiation, antisense oligonucleotides (ASOs) targeting 86 human miRNAs were transfected into cultured human pre-adipocytes, and their ability to modulate adipocyte differentiation was evaluated. Expression of 254 miRNAs in differentiating adipocytes was also examined on a miRNA microarray. Here we report that the combination of expression data and functional assay results identified a role for miR-143 in adipocyte differentiation. miR-143 levels increased in differentiating adipocytes, and inhibition of miR-143 effectively inhibited adipocyte differentiation. In addition, protein levels of the proposed miR-143 target ERK5 (4) were higher in ASO-treated adipocytes. These results demonstrate that miR-143 is involved in adipocyte differentiation and may act through target gene ERK5.  相似文献   

20.
The potency of antisense oligonucleotide (ASO) drugs has significantly improved in the clinic after exploiting asialoglycoprotein receptor (ASGR) mediated delivery to hepatocytes. To further this technology, we evaluated the structure–activity relationships of oligonucleotide chemistry on in vivo potency of GalNAc-conjugated Gapmer ASOs. GalNAc conjugation improved potency of ASOs containing 2′-O-methyl (2′-O-Me), 3′-fluoro hexitol nucleic acid (FHNA), locked nucleic acid (LNA), and constrained ethyl bicyclo nucleic acid (cEt BNA) 10–20-fold compared to unconjugated ASOs. We further demonstrate that GalNAc conjugation improves activity of 2′-O-(2-methoxyethyl) (2′-O-MOE) and Morpholino ASOs designed to correct splicing of survival motor neuron (SMN2) pre-mRNA in liver after subcutaneous administration. GalNAc modification thus represents a viable strategy for enhancing potency of ASO with diverse nucleic acid modifications and mechanisms of action for targets expressed in hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号