首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli operon designated flaA contains seven flagellar genes; among them are two switch protein genes whose products are believed to interface with the motility and chemotaxis machinery of the cell. Complementation analysis using several plasmids carrying different portions of the flaA operon and analysis of expression of these plasmids in minicells allowed the identification of two flagellar gene products. The MotD (now called FliN) protein, a flagellar switch protein, was determined to have an apparent molecular weight of 16,000, and the FlaAI (FliL) protein, encoded by a previously unidentified gene, had an apparent molecular weight of 17,000. DNA sequence analysis of the motD gene revealed an open reading frame of 414 base pairs. There were two possible initiation codons (ATG) for motD translation, the first of which overlapped with the termination codon of the upstream gene, flaAII (fliN). The wild-type flaAI gene on the chromosome was replaced with a flaAI gene mutated in vitro. Loss of the flaAI gene product resulted in a nonmotile and nonflagellated phenotype. The subcellular location for both the MotD and FlaAI proteins was determined; the FlaAI protein partitioned exclusively in the insoluble fraction of a whole minicell sonic extract, whereas the MotD protein remained in both the soluble and insoluble fractions. In addition, we subcloned a 2.2-kilobase-pair DNA fragment capable of complementing the remaining four genes of the flaA operon (flbD [fliO], flaR [fliP], flaQ [fliQ], and flaP [fliR]).  相似文献   

2.
Incomplete flagellar structures were detected in osmotically shocked cells or membrane-associated fraction of many nonflagellate mutants of Salmonella typhimurium by electron microscopy. The predominant types of these structures in the mutants were cistron specific. The incomplete basal bodies were detected in flaFI, flaFIV, flaFVIII, and flaFIX mutants, the structure homologous to a basal body in flaFV mutants, the polyhook-basal body complex in flaR mutants, and the hook-basal body complex in flaL and flaU mutants. No structures homologous to flagellar bases or their parts were detected in the early-fla group nonflagellate mutants of flaAI, flaAII, flaAIII, flaB, flaC, flaD, flaE, flaFII, flaFIII, flaFVI, flaFVII, flaFX, flaK, and flaM. From these observations, a process of flagellar morphogenesis was postulated. The functions of the early-fla group are essential to the formation of S ring-M ring-rod complexes bound to the membrane. The completion of basal bodies requires succeeding functions of flaFI, flaFIV, flaFVIII, and flaFIX. Next, the formation of hooks attached to basal bodies proceeds by the function of flaFV and by flaR, which controls the hook length. Flagellar filaments appear at the tips of hooks because of the functions of flaL, flaU, and flagellin genes.  相似文献   

3.
The flagellar genes flaFV, flaFVII, and flaFVIII of Salmonella typhimurium were cloned, and their presence on a given plasmid was verified by complementation of Escherichia coli mutants defective in the homologous genes. The gene products were identified by radiolabeling in a minicell system as being proteins of the following molecular masses: FlaFV, 42 kilodaltons (kDa); FlaFVI, 32 kDa; FlaFVII, 30 kDA; and FlaFVIII, 27 kDa. These data, together with isoelectric focusing data, confirm gene product assignments of flagellar components made indirectly from mutant studies. Flagellar components are transported by either a signal peptide-dependent or a flagellar-specific pathway. Consistent with its location in the outer membrane ring of the basal body, protein FlaFVIII seems to use the signal peptide-dependent pathway, since it was synthesized in a precursor form and processed, presumably by peptide cleavage, to a mature form; the maturation process was inhibited by addition of a proton ionophore. Proteins synthesized in minicells were localized as follows: FlaFVI was localized to the soluble fraction (cytoplasm); pre-FlaFVIII and FlaFVIII were localized to the particulate fraction (membrane or high-molecular-weight aggregate); FlaFV and FlaFVII were localized to both fractions. The significance of these locations in terms of known or suspected roles in the flagellar apparatus is discussed.  相似文献   

4.
The flaW, flaU, and flaV genes of Salmonella typhimurium LT2 were cloned into pBR322. These genes were mapped on the cloned DNA fragments by restriction endonuclease analysis and construction of the deletion derivatives. Their gene products were identified, by the minicell method, as proteins whose molecular weights were estimated to be 59,000 for the flaW product, 31,000 for the flaU product, and 48,000 for the flaV product. These values are identical to those of three species of hook-associated proteins (HAPs), namely, HAP1, HAP3, and HAP2. Furthermore, antibodies against HAP1, HAP3, and HAP2 specifically reacted with the gene products of flaW, flaU, and flaV, respectively. Therefore, we concluded that they are structural genes for HAPs. The antibodies against HAP1 and HAP3 also specifically reacted with the gene products of flaS and flaT of Escherichia coli, respectively. This indicates that these gene products are HAPs in E. coli. This result is consistent with the demonstration that flaS and flaT of E. coli are functionally homologous with flaW and flaU of S. typhimurium.  相似文献   

5.
Nine of the cbi genes from the 17.5 kb cob operon of Salmonella typhimurium previously shown by genetic studies to be involved in the biosynthesis of cobinamide from precorrin-2, have been subcloned and expressed in Escherichia coli. Seven of the gene products were found in the soluble fraction of cell lysates and have been purified. The gene products corresponding to cbi E, F, H and L were shown by SAM binding and by homology with other SAM-binding proteins to be candidates for the methyltransferases of vitamin B12 biosynthesis. The enzymatic functions of the gene products of cbiL and cbiF are associated with C-methylation at C-20 of precorrin-2 and C-11 of precorrin-3.  相似文献   

6.
The study of Salmonella virulent strains has revealed that the characteristic feature of such strains is the presence of plasmids with a molecular weight of 90.2-91.5 kb for S. typhimurium and 77.2-78.5 kb for S. dublin. From Salmonella strains harboring only a single plasmid, variants with no plasmid at all have been obtained. These variants possess lower virulence for mice infected through enteral and intraperitoneal routes; besides, they lose their capacity for penetration into epithelial cells of HeLa line. S. typhimurium and S. dublin have shown decreased multiplication rate in vivo in comparison with the parent strains, while the multiplication rates in vitro were similar. These results suggest that the products of plasmid genes are either responsible for the virulent properties of salmonellae, or they have regulatory functions, thus controlling the work of chromosomal genes.  相似文献   

7.
Three flagellar genes of Salmonella typhimurium (flaAII.2, flaQ, and flaN) were found to be multifunctional, each being associated with four distinct mutant phenotypes: nonflagellate (Fla-), paralyzed (Mot-), nonchemotactic (Che-) with clockwise motor bias, and nonchemotactic (Che-) with counterclockwise motor bias. The distribution of Fla, Mot, and Che mutational sites within each gene was examined. Fla sites were fairly broadly distributed, whereas Mot and Che sites were more narrowly defined. Local subregions rich in sites of one type were not generally rich in sites of another type. Among Che sites, there was little overlap between those corresponding to a clockwise bias and those corresponding to a counterclockwise bias. Our results suggest that within the corresponding gene products there are specialized subregions for flagellar structure, motor rotation, and control of the sense of rotation.  相似文献   

8.
The flaAII gene of Salmonella typhimurium has also been termed motC and cheV, because defective alleles may give rise to a nonflagellate, paralyzed, or nonchemotactic phenotype. We isolated a temperature-sensitive motility mutant (MY1) and have found that the mutation occurs in the flaAII gene. In temperature-jump experiments, MY1 could be converted from highly motile to paralyzed within 0.5 s, demonstrating that flaAII is a structural gene whose product is immediately essential for motor rotation. The mutant, although chemotactic at permissive temperatures (less than 36 degrees C), had a higher clockwise rotational bias than did the wild type; it can therefore be regarded simultaneously as motC(Ts) and cheV (tumbly). The only previously reported S. typhimurium cheV mutant was smooth-swimming. A shift toward counterclockwise bias accompanied loss of rotational speed in the restrictive temperature range. This result, by analogy with known proton motive force effects on motor switching, further indicates a central role of the flaAII (motC, cheV) protein in the energy transduction and switching process. Since there is no evidence associating it with the isolable entity known as the basal body, it may reside at the cytoplasmic face of the flagellar motor.  相似文献   

9.
Some new, generally nonchemotactic mutants of Salmonella typhimurium were isolated and they, together with previously isolated mutants and some from other investigators, were mapped. Most of the mutants were classified in nine complementation groups, which are probably individual genes. Of these, five map at the end of the flagella region and appear in the order motB-(cheWcheP)-cheX-cheQ-cheR-flaC. Two of the mutations, cheU and cheV, map in the flaQ and flaAII genes, respectively. The remaining genes, cheS and cheT, have not yet been mapped. Most of the mutants are phenotypically smoothly swimming, but some are constantly tumbling. Two of the groups show dominant behavior as recipients in genetic crosses; the rest are recessive. The mutants vary in their responses to stimuli but, since their responses to all chemoeffectors are abnormal, the central processing, rather than individual, receptors must be impaired. The two mutations that coincide with genes for flagella probably involve the locus of the final delivery of sensing signal to the flagella.  相似文献   

10.
The gene products of the mutL and mutS loci play essential roles in the dam-directed mismatch repair in both Salmonella typhimurium LT2 and Escherichia coli K-12. Mutations in these genes result in a spontaneous mutator phenotype. We have cloned the mutL and mutS genes from S. typhimurium by generating mutL- and mutS-specific probes from an S. typhimurium mutL::Tn10 and an mutS::Tn10 strain and using these to screen an S. typhimurium library. Both the mutL and mutS genes from S. typhimurium were able to complement E. coli mutL and mutS strains, respectively. By a combination of Tn1000 insertion mutagenesis and the maxicell technique, the products of the mutL and mutS genes were shown to have molecular weights of 70,000 and 98,000 respectively. A phi (mutL'-lacZ+) gene fusion was constructed; no change in the expression of the fusion could be detected by treatment with DNA-damaging agents. In crude extracts, the MutS protein binds single-stranded DNA, but not double-stranded DNA, with high affinity.  相似文献   

11.
Role of the flaR gene in flagellar hook formation in Salmonella spp.   总被引:14,自引:11,他引:3       下载免费PDF全文
Flagellar filaments were reconstituted by polymerization with exogenously supplied flagellin monomers at the tips of normal hooks on Salmonella cells which were missing the filaments because of mutations in either the flaL or flaU gene or the flagellin genes H1 and H2. Reconstitution did not occur at the tips of polyhooks of the flaR mutant cells. Thus, the absence of flagellar filaments in the flaR mutant cells was probably caused by the inability of the polyhooks to work as polymerization nuclei for flagellin. A Phf+ mutant which produced polyhooks with flagellar filaments was isolated from a flaR polyhook mutant. Genetic analysis of the Phf+ mutant showed that it carried an intracistronic suppressor mutation of the original flaR mutation. This result indicated that the flaR gene regulates hook length and initiates flagellin formation.  相似文献   

12.
The flhB and flhA genes constitute an operon called flhB operon on the Salmonella typhimurium chromosome. Their gene products are required for formation of the rod structure of flagellar apparatus. Furthermore, several lines of evidence suggest that they, together with FliI and FliH, may constitute the export apparatus of flagellin, the component protein of flagellar filament. In this study, we determined the nucleotide sequence of the entire flhB operon from S. typhimurium. It was shown that the flhB and flhA genes encode highly hydrophobic polypeptides with calculated molecular masses of 42,322 and 74,848 Da, respectively. Both proteins have several potential membrane-spanning segments, suggesting that they may be integral membrane proteins. The flhB operon was found to contain an additional open reading frame capable of encoding a polypeptide with a calculated molecular mass of 14,073 Da. We designated this open reading frame flhE. The N-terminal 16 amino acids of FlhE displays a feature of a typical signal sequence. A maxicell labeling experiment enabled us to identify the precursor and mature forms of the flhE gene products. Insertion of a kanamycin-resistant gene cartridge into the chromosomal flhE gene did not affect the motility of the cells, indicating that the flhE gene is not essential for flagellar formation and function. We have overproduced and purified N-terminally truncated FlhB and FlhA proteins and raised antibodies against them. By use of these antibodies, localization of the FlhB and FlhA proteins was analyzed by Western blotting (immunoblotting) with the fractionated cell extracts. The results obtained indicated that both proteins are localized in the cytoplasmic membrane.  相似文献   

13.
The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity.  相似文献   

14.
15.
16.
The citrate utilization determinant from transposon Tn3411 has been cloned and sequenced, and its polypeptide products have been characterized in minicell experiments. The nucleotide sequence was determined for a 2,047-base-pair BglII restriction endonuclease fragment that includes the citrate determinant. This region contains an open reading frame that would encode a 431-amino-acid very hydrophobic polypeptide and which is preceded by a reasonable ribosomal binding site. However, the single polypeptide found in minicell experiments had an apparent molecular weight of 35,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

17.
Interaction between the min locus and ftsZ.   总被引:25,自引:16,他引:9       下载免费PDF全文
In Escherichia coli, distinct but similar minicell phenotypes resulting from mutation at the minB locus and increased expression of ftsZ suggested a possible interaction between these genes. A four- to fivefold increase in FtsZ resulting from increased gene dosage was found to suppress the lethality of minCD expressed from the lac promoter. Since increased MinCD did not affect the level of FtsZ, this suggested that MinCD may antagonize FtsZ to inhibit its cell division activity. This possibility was supported by the finding that alleles of ftsZ isolated as resistant to the cell division inhibitor SulA were also resistant to MinCD. Among the ftsZ(Rsa) alleles, two appeared to be completely resistant to MinCD as demonstrated by the lack of an effect of MinCD on cell length and a minicell phenotype observed in the absence of a significant increase in FtsZ. It was shown that SulA inhibits cell division independently of MinCD.  相似文献   

18.
Entry into intestinal epithelial cells is an essential step in the pathogenesis of Salmonella infections. Our laboratory has previously identified a genetic locus, inv, that is necessary for efficient entry of Salmonella typhimurium into cultured epithelial cells. We have carried out a molecular and functional analysis of invB and invC, two members of this locus. The nucleotide sequence of these genes indicated that invB and invC encode polypeptides with molecular masses of 15 and 47 kDa, respectively. Polypeptides with the predicted sizes were observed when these genes were expressed under the control of a T7 promoter. Strains carrying nonpolar mutations in these genes were constructed, and their phenotypes were examined in a variety of assays. A mutation in invC rendered S. typhimurium defective in their ability to enter cultured epithelial cells, while mutations in invB did not. Comparison of the predicted sequences of InvB and InvC with translated sequences in GenBank revealed that these polypeptides are similar to the Shigella spp. proteins Spa15 and Spa47, which are involved in the surface presentation of the invasion protein antigens (Ipa) of these organisms. In addition, InvC showed significant similarity to a protein family which shares sequence homology with the catalytic beta subunit of the F0F1 ATPase from a number of microorganisms. Consistent with this finding, purified preparations of InvC showed significant ATPase activity. Site-directed mutagenesis of a residue essential for the catalytical function of this family of proteins resulted in a protein devoid of ATPase activity and unable to complement an invC mutant of S. typhimurium. These results suggest that InvC may energize the protein export apparatus encoded in the inv locus which is required for the surface presentation of determinants needed for the entry of Salmonella species into mammalian cells. The role of InvB in this process remains uncertain.  相似文献   

19.
The chemotaxis genes cheR, cheB, cheY, cheZ, and tar of Salmonella typhimurium were cloned into bacteriophage lambda vectors and onto pBR322 plasmids by recombinant DNA techniques. The genes were linearly arranged in the order tar-cheR-cheB-cheY-cheZ (and were read from a promoter on the upstream side of the tar or cheR gene). However, their stoichiometries of expression were found to be 4:1:1:18:3, respectively. The overexpression of the cheY gene appeared to be a function of translational control. These five che genes were placed on a multicopy plasmid, and the gene products were overproduced in the cells, as shown by enzyme assays. The overproduction of the products of these five genes relative to those of the other che genes caused some changes in chemotactic properties, but no dramatic destruction of sensing ability.  相似文献   

20.
Analysis of the sequence of a 4.3-kb region downstream of rfaJ revealed four genes. The first two of these, which encode proteins of 27,441 and 32,890 Da, were identified as rfaY and rfaZ by homology of the derived protein sequences of their products to the products of similar genes of Salmonella typhimurium. The amino acid sequences of proteins RfaY and RfaZ showed, respectively, 70 and 72% identity. Genes 3 and 4 were identified as rfaK and rfaL on the basis of size and position, but the derived amino acid sequences of the products of these genes showed very little similarity (about 12% identity) between Escherichia coli K-12 and S. typhimurium. The next gene in the cluster, rfaC, encodes a product which also shows strong protein sequence homology between E. coli K-12 and S. typhimurium, as do the rfaF and rfaD genes which lie beyond it. Thus, the rfa gene cluster appears to consist of two blocks of genes which are conserved flanking a central region of two genes which are not conserved between these species. Although the RfaL protein sequence is not conserved, hydropathy plots of the two RfaL species are nearly identical and indicate that this is a typical integral membrane protein with 10 or more potential transmembrane domains. We noted the similarity of the structure of the rfa gene cluster to that of the rfb gene cluster, which has now been sequenced in several Salmonella serovars. The rfb cluster also contains a gene which lies within a central nonconserved region and encodes an integral membrane protein similar to protein RfaL. We speculate that protein RfaL may interact in a strain- or species-specific way with one or more Rfb proteins in the expression of surface O antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号