首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

2.
1. Horse liver acid phosphatase was separated into two partially purified fractions differing in molecular weight (enzyme I about 100 00, enzyme II about 25 000). 2. Enzyme I was separated into several subfractions by DEAE-cellulose chromatography and isoelectric focusing. 3. Molecular weight, sedimentation coefficient and effective molecular radii were determined for acid phosphatases I and II by gel filtration and density-gradient centrifugation.  相似文献   

3.
Cytosolic protein phosphotyrosine (PPT) phosphatase was measured using a new substrate, Tyr(32P)-labeled bovine serum albumin. Kidney was found as a particularly rich tissue source of PPT-phosphatase activity, containing twice as much as liver and over 10-fold more than brain, heart, lung, or skeletal muscle. An affinity column of Zn2+-iminodiacetate agarose adsorbed up to 60% of the PPT-phosphatase present in kidney extracts. Subsequent chromatography on DEAE-Sepharose separated the phosphatase into two peaks, labeled I and II, that had Mr = 34,000 and 37,000, respectively, upon gel filtration with Sephadex G-75 Superfine. Overall purification of 850- and 1100-fold was achieved with a net 4% yield. Both phosphatases hydrolyzed p-nitrophenylphosphate as well as the protein substrate in the presence of EDTA. Peak I phosphatase activity displayed a neutral pH optimum, had an absolute requirement for sulfhydryl compounds, and was sensitive to trypsin, whereas Peak II activity had an acidic pH optimum and was active without mercaptans. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with S. aureus V8 protease. The results show that multiple forms of PPT phosphatase specifically interact with Zn2+ and provide a basis for further structural and functional comparisons among different members of the phosphoprotein phosphatase family.  相似文献   

4.
We developed a method for the detection of phosphatase activity using fluorogenic substrates after polyacrylamide gel electrophoresis. When phosphatases such as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), protein phosphatase 2C (PP2C), protein phosphatase 5 (PP5), and alkaline phosphatase were resolved by polyacrylamide gel electrophoresis in the absence of SDS and the gel was incubated with a fluorogenic substrate such as 4-methylumbelliferyl phosphate (MUP), all of these phosphatase activities could be detected in situ. Although 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as well as MUP could be used as a fluorogenic substrate for an in-gel assay, MUP exhibited lower background fluorescence. Using this procedure, several fluorescent bands that correspond to endogenous phosphatases were observed after electrophoresis of various crude samples. The in-gel phosphatase assay could also be used to detect protein phosphatases resolved by SDS-polyacrylamide gel electrophoresis. In this case, however, the denaturation/renaturation process of resolved proteins was necessary for the detection of phosphatase activity. This procedure could be used for detection of renaturable protein phosphatases such as CaMKP and some other phosphatases expressed in cell extracts. The present fluorescent in-gel phosphatase assay is very useful, since no radioactive compounds or no special apparatus are required.  相似文献   

5.
Yoshimura Y  Sogawa Y  Yamauchi T 《FEBS letters》1999,446(2-3):239-242
Autophosphorylation-dependent translocation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) to postsynaptic densities (PSDs) from cytosol may be a physiologically important process during synaptic activation. We investigated a protein phosphatase responsible for dephosphorylation of the kinase. CaM kinase II was shown to be targeted to two sites using the gel overlay method in two-dimensional gel electrophoresis. Protein phosphatase 1 (PP1) was identified to dephosphorylate CaM kinase II from its complex with PSDs using phosphatase inhibitors and activators, and purified phosphatases. The kinase was released from PSDs after its dephosphorylation by PP1.  相似文献   

6.
Four phosphoprotein phosphatases, with the ability to act upon hydroxymethylglutaryl (HMG)-CoA reductase, phosphorylase, and glycogen synthase have been purified from rat liver cytosol through a process that involves DEAE-cellulose, aminohexyl-Sepharose-4B, and Bio-Gel A 1.5 m chromatographies. Protein phosphatase II (Mr 180,000) was the major enzyme (68%) with a very broad substrate specificity, showing similar activity toward the three substrates. Phosphatases I1 (Mr 180,000) and I3 (Mr 250,000) accounted for only 12 and 15% of the total activity, respectively, and they were also able to dephosphorylate the three substrates. In contrast, phosphatase I2 (Mr 200,000) showed only phosphorylase phosphatase activity with insignificant dephosphorylating capacity toward HMG-CoA reductase and glycogen synthase. Upon ethanol treatment at room temperature, the Mr of all phosphatases changed; protein phosphatases I2, I3, and II were brought to an Mr of 35,000, while phosphatase I1 was reduced to an Mr of 69,000. Glycogen synthase phosphatase activity was decreased in all four phosphatases. There was also a decrease in phosphatase I1 activity toward HMG-CoA reductase and phosphorylase as substrates. The HMG-CoA reductase phosphatase and phosphorylase phosphatase activities of phosphatases I2, I3, and II were increased after ethanol treatment. Each protein phosphatase showed a different optimum pH, which changed depending on the substrate. The four phosphatases increased their activity in the presence of Mn2+ and Mg2+. In general, Mn2+ was a better activator than Mg2+, and phosphatase I1 showed a stronger dependency on these cations than any other phosphatase. Phosphorylase was a competitive substrate in the HMG-CoA reductase phosphatase and glycogen synthase phosphatase reactions of protein phosphatases I1, I3, and II. HMG-CoA reductase was also able to compete with phosphorylase and glycogen synthase for phosphatase activity. Glycogen synthase phosphatase activity presented less inhibition in the low-Mr forms. A comparison has been made with other protein phosphatases previously reported in the literature.  相似文献   

7.
Phosphatases in cucumber roots, whose production was inducedby Ca2$ deficiency, were characterized chromatographically usingATP, 2'(3')-AMP and p-nitrophenyl-phosphate (PNPP) as substrates.Ca2$ deficiency stimulated greater than 10-fold increases inthe activities with these substrates of the non-adsorbed fractionfrom a DEAE-cellulose column. Several fractions associated withthese phosphatase activities were eluted from the column withNaCl solution; their levels increased less with Ca2$ starvation.When the non-adsorbed fraction from Ca2$-straved roots was appliedto a Sephadex G-200 column, fractions associated with 2'(3')-AMPase(phosphatase I) and with both ATPase and PNPPase (phosphataseII) were separated. In the control roots, very weak activitiesof phosphatases I and II were observed at the same positionon the gel filtration. The phosphatase I isolated from boththe control and Ca2$-starved roots was extremely specific tonucleoside 2'(3')-monophosphates, whereas phosphatase II fromboth types of roots had a relatively broad substrate specificity.When phosphatase I from Ca2$-starved roots was stained with2'(3')-AMP in CaCl2 after polyacrylamide gel electrophoresis,a single band was obtained. Phosphatase I from control rootsalso showed a single band, with the same Rf value. PhosphataseII from both types of roots contained two isozyme bands whenthe activities were stained with either ATP or PNPP. These resultsindicate that Ca2$ starvation causes specific increases in thelevel of phosphatases I and II in cucumber roots. (Received October 28, 1981; Accepted January 19, 1982)  相似文献   

8.
The alkaline phosphatases present in choriocarcinoma cells, either untreated or treated with 5-bromo-2′-deoxyuridine (BrdUrd), were purified and characterized. Three forms of phosphatase [I, IIa (or IIIa), and IIb (or IIIb)]were isolated from both the untreated and BrdUrd-treated cells. Although BrdUrd induced the synthesis of all three forms of alkaline phosphatase in these cells, the synthesis of forms IIa and IIb was, however, preferentially stimulated. The forms of phosphatase in choriocarcinoma cells resembled each other in their kinetic properties and thermal lability, but differed in their molecular weights and in their electrophoretic mobilities in nondenaturing polyacrylamide gels. All three phosphatases were inactivated by antiserum to term-placental alkaline phosphatase. The alkaline phosphatases from choriocarcinoma cells differed, however, from the enzyme from term placentas in several physicochemical properties. The phosphatases from choriocarcinoma cells had a lower Km value for p-nitrophenyl phosphate, were more sensitive to inhibition by l-leucine, levamisole, l-p-bromotetramisole, and EDTA, and were more heat-labile. Phosphatase I comigrated with term-placental alkaline phosphatase on nondenaturing polyacrylamide electrophoretic gels, but phosphatases IIa and IIb migrated more slowly. The apparent molecular weights of phosphatase forms I, IIa, and IIb were estimated by gel filtration and polyacrylamide gel electrophoresis to be 115,000, 240,000, and 510,000, respectively. Although three molecular forms of alkaline phosphatase occurred in choriocarcinoma cells, the subunit molecular weight of these phosphatases appeared to be identical to each other and to the subunit of term-placental alkaline phosphatase (63,000 MW). The alkaline phosphatase in choriocarcinoma cells therefore exists in the dimeric, tetrameric, and octameric forms.  相似文献   

9.
Phosphoprotein phosphatase IA, which represents the major glycogen synthase phosphatase activity in rat liver cytosol, has been purified to apparent homogeneity by chromatography on DEAE-cellulose, histone - Sepharose-4B and Sephadex G-100. The molecular weight of the purified enzyme was 40 000 by gel filtration and 48 000 by sodium dodecyl sulfate gel electrophoresis, Phosphatase IA is therefore a monomeric protein. When treated with 80% ethanol at room temperature, phosphatase IA underwent an inactivation which was totally prevented by 2 mM MgCl2. Catalytically, phosphatase IA has a preference for glycogen synthase D compared with phosphatases IB and II and obligatorily requires Mg2+ or Mn2+ for activity. Maximum activity was attained at 5 mM MgCl2. Since Mg2+ does not activate other phosphoprotein phosphatases in rat liver cytosol, we propose the term 'Mg2+-dependent glycogen synthase phosphatase' for phosphatase IA.  相似文献   

10.
S6 phosphatase activities, which dephosphorylate the phosphorylated S6 synthetic peptide, RRLSSLRASTSKSESSQK, were purified to near homogeneity from the membrane and cytosolic fractions of the rat parotid gland. Multiple S6 phosphatases were fractionated on Mono Q and gel filtration columns. In the cytosolic fraction, at least three forms of S6 phosphatase, termed peaks I, II, and III, were differentially resolved. The three forms had different sizes and protein compositions. The peak I enzyme, which had an approximately Mr of 68 kDa on gel filtration, appears to represent a dimeric form of the 39 kDa protein. This S6 phosphatase showed the high activity in the presence of EGTA and was completely inhibited by nanomolar concentrations of either okadaic acid or inhibitor 2. The peak II S6 phosphatase enzyme, with an Mr of 35 kDa, was activated by Mn2+. This form could be a proteolytic product of the catalytic subunit of type 1 phosphatase, due to its sensitivities to okadaic acid and inhibitor 2. The peak III enzyme, with an Mr of 55 kDa, is a Mn2+-dependent S6 phosphatase. This S6 phosphatase can be classified as a type 1 phosphatase, due to its sensitivity to okadaic acid, since the IC50 of okadaic acid is 4 nM. However, the molecular mass of this S6 phosphatase differs from that of the type 1 catalytic subunit (37 kDa) and showed less sensitivity to inhibitor 2. On the other hand, the membrane fraction contained one form of the S6 phosphatases, termed peak V (Mr 34 and 28 kDa), which could be classified as a type 1 phosphatase. This S6 phosphatase activity was greatly stimulated by Mn2+.Abbreviations PP1-C catalytic subunit of type 1 protein phosphatase - SDS sodium dodecyl sulfate - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PMSF phenylmethylsulfonyl fluoride - Mops 4-morpholine propanesulfonic acid - EDTA ethylenediaminetetraacetate - EGTA [ethylenbis (oxyethylenenitrilo)]-tetra acetic acid  相似文献   

11.
Acid phosphatase (EC 3.1.3.2 [EC] ) was extracted from mycelia ofAspergillus niger, then separated and purified into four fractions.These acid phosphatases, designated IA, IB, II and III, hadpH optima at 5.0, 4.5–5.0, 4.5 and 2.5, respectively.None required the presence of divalent cations, and all werestrongly inhibited by NaF. They were non-specific acid phosphatasesbut varied in their activities with various substrates. Thealkaline phosphatase (EG 3.1.3.1 [EC] ) of A. niger was also separatedinto two fractions, alkaline phosphatases I and II. Changes in the activity ratios of these acid and alkaline phosphataseswere studied during culture in a peptone medium. The activityof acid phosphatase II was higher than the others when the culturewas young. The activity of acid phosphatase III increased toa maximum in the actively growing phase, then decreased. Thatof acid phosphatase I became highest in the mature culture.In contrast, the activity of alkaline phosphatase I was higherthan the others in young cultures, while alkaline phosphataseII became dominant in the mature culture. Activities of the various acid and alkaline phosphatases indifferent regions of the growing colonies were also studied.The changing patterns of these enzymes in both liquid and surfacecultures were compared. When A. niger was cultured in a medium containing a low concentrationof phosphate, acid phosphatase activity greatly increased afterthe consumption of phosphate, but alkaline phosphatase activitydid not. 1 The present experiments were carried out, for the most partat the Institute of Applied Microbiology of the University ofTokyo. (Received February 10, 1975; )  相似文献   

12.
Characterization of Leishmania donovani acid phosphatases   总被引:7,自引:0,他引:7  
A crude membrane fraction from promastigotes of Leishmania donovani grown in a liquid culture medium containing 20% fetal calf serum was prepared by freeze-thawing, centrifugation (200,000 X g, 30 min), and extraction with 2% (w/v) sodium cholate. After removal of the bile salt by chromatography on a Sephadex G-75 column, the solubilized membrane protein fraction, rich in acid phosphatase activity, was chromatographed on columns containing concanavalin A-Sepharose, QAE-Sephadex, and Sephadex G-150 and G-100. Three distinct acid phosphatases were resolved: the major phosphatase activity (70% of the total) was L-(+)-tartrate-resistant (designated ACP-P1) and corresponds to the acid phosphatase localized to the outer surface of the parasite's plasma membrane; the other two phosphatases (ACP-P2 and ACP-P3) account for the remaining 30% of the particulate acid phosphatase activity, and both of these enzymes are L-(+)-tartrate-sensitive. Using a combination of sucrose density gradient centrifugation, gel filtration chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was determined that ACP-P1 is a 128,000-dalton protein composed of two subunits of 65,000-68,000 daltons. ACP-P1 has an isoelectric point of 4.1, a pH optimum of 5.5, hydrolyzes fructose 1,6-diphosphate, but no other sugar phosphates and dephosphorylates phosphotyrosine, yeast mannan, and the phosphorylated form of rat liver pyruvate kinase. ACP-P2 (pI, 5.4) and ACP-P3 (pI, 7.1) with molecular masses of 132,000 and 108,000 daltons, respectively, are both tartrate-sensitive and are distinguished from each other on the basis of their sensitivity to inhibition by polyanionic molybdenum complexes. These two phosphatases also have their pH optima in the pH 5.0-6.0 range, but have a considerably broader substrate specificity than ACP-P1.  相似文献   

13.
The distribution of acid phosphatases of intermediate molecular weight was determined in various mammalian tissues. The intermediate-molecular-weight acid phosphatases (designated P-II-1 and 2) comprised about 25% of the p-nitrophenyl phosphatase activity in the supernatant of bovine kidney cortex homogenate. The P-II-1 and 2 purified 2,000 fold showed the pI values of 5.9 and 5.7, respectively, on isoelectric focusing. Apparent molecular weights of both P-II-1 and 2 were estimated to be 42,000 by Sephadex G-100 gel filtration and 44,000 by SDS-polyacrylamide disc gel electrophoresis. Both the enzymes catalyzed the hydrolysis of a wide variety of natural phosphomonoesters, except for the phosphoproteins phosphoserine and o-phosphocholine. The enzymes showed a high activity on pyridoxal phosphate, beta-glycerophosphate, and 2'-AMP. The optimum activity pH was near 5 with p-nitrophenyl phosphate, but was shifted to the neutral range when pyridoxal phosphate was the substrate. The cations Hg2+ and Ag+ had a marked inhibitory effect. Neither enzyme was inhibited significantly by L-(+)-tartrate or pCMB. The two other types of acid phosphatases, the high-molecular-weight (designated P-I) and low-molecular-weight (designated P-III), were also purified to homogeneity from bovine kidney cortex, and were compared with P-II from several aspects including substrate specificity and susceptibility to various compounds.  相似文献   

14.
Two anti-H(O) lectins were separated from extracts of Cytisus sessilifolius seeds by successive affinity chromatographies on columns of di-N-acetylchitobiose- and galactose-Sepharose 4B. One was found to be inhibited most by di-N-acetylchitotriose or tri-N-acetylchitotriose [Cytisus-type anti-H(O) lectin designated as Cytisus sessilifolius lectin I (CSA-I)] and the other anti-H(O) lectin was inhibited by galactose or lactose and designated as Cytisus sessilifolius lectin II (CSA-II). These two anti-H(O) lectins were further purified by gel filtration on TSK-Gel G3000SW. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular masses of the purified lectins I and II were found to be 95,000 and 68,000 Da, respectively, by gel filtration on TSK-Gel G3000SW. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and 2-mercaptoethanol, both lectins gave a single component of molecular masses of 27,000 +/- 2,000 and 34,000 +/- 2,000 Da, respectively, suggesting that the lectins I and II were composed of four and two apparently identical subunits, respectively. Lectins I and II contain 38% and 13% carbohydrate, respectively, and only very small amounts of cysteine and methionine, but they are rich in aspartic acid, serine and glycine. The N-terminal amino-acid sequences of these two lectins were determined and compared with those of several lectins already published.  相似文献   

15.
Two acid phosphatase forms were isolated from chicken liver by gel filtration on Sephadex G-100. These enzymes, termed I and II, have similar Km- and Vmax-values, but differ in molecular weight, optimum pH, sensitivity to various inhibitors and substrate specificity. The results were compared with the numerous literature reports of mammalian acid phosphatases.  相似文献   

16.
Callus calcifying cartilage alkaline phosphatase was resolved by DEAE-cellulose column chromatography into two distinct phsophatase activities. The phosphatase activity which was eluted first from the column, (phosphatase I), was active towards a variety of phosphate esters, sodium pyrophosphatase and several linear polyphosphates, while the second phosphatase activity , (phosphatase II), was active toward simple phosphate esters but not towards sodium pyrophosphate and linear oligo or polyphosphates. All the phosphate esters, sodium pyrophosphate and polyphosphates at higher concentrations were inhibitory for phosphatase I. The modulating effects of magnesium, calcium, zinc and other phosphatase modulators have been investigated. Both phosphatases from callus calcifying cartilage were found to be substrates of neuraminidase with sialic acid as the product. Besides the difference in their specificity, the phosphatases were found to be immunologically different and to have different molecular weights, strong indication that they are different enzymes.  相似文献   

17.
We have examined the extracellular phosphatases produced by the terrestrial green alga Chlamydomonas reinhardtii in response to phosphorus deprivation. Phosphorus-deprived cells increase extra-cellular alkaline phosphatase activity 300-fold relative to unstarved cells. The alkaline phosphatases are released into the medium by cell-wall-deficient strains and by wild-type cells after treatment with autolysin, indicating that they are localized to the periplasm. Anion-exchange chromatography and analysis by nondenaturing polyacrylamide gel electrophoresis revealed that there are two major inducible alkaline phosphatases. A calcium-dependent enzyme composed of 190-kD glycoprotein subunits accounts for 85 to 95% of the Alkaline phosphatase activity. This phosphatase has optimal activity at pH 9.5 and a Km of 120 to 262 microns for all physiological substrates tested, with the exception of phytic acid, which it cleaved with a 50-fold lower efficiency. An enzyme with optimal activity at pH 9 and no requirement for divalent cations accounts for 2 to 10% of the alkaline phosphatase activity. This phosphatase was only able to efficiently hydrolyze arylphosphates. The information reported here, in conjunction with the results of previous studies, defines the complement of extracellular phosphatases produced by phosphorus-deprived Chlamydomonas cells.  相似文献   

18.
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.  相似文献   

19.
The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32P-ACC phosphorylated by the casein kinases was identified.  相似文献   

20.
Appropriate conditions for the successful separation of Neurospora crassa phosphatases by polyacrylamide gel electrophoresis have been developed. A neutral range electrophoresis buffer is essential for separation. Procedures are described for identification of acid and alkaline phosphatases. Four of the phosphatase bands separated correspond to phosphatases characterized by previous investigators, while a fifth band appears to be a phosphatasc isozyme not previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号