首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  1. In horned beetles selection favours males that adjust their investment in horn development in relation to cues that predict adult body size. Here it is shown that in the Japanese horned beetle, Allomyrina dichotoma . There is a significant discontinuity in the horn length body size allometry. This can be described as a linear relationship that is shifted towards an increased horn length to body length ratio in males with horns longer than 16 mm.
2. Larval nutrition explains morph determination in A. dichotoma . However, unlike other species, variation in larval nutrition was the result of a seasonal time constraint that limits the time available for feeding prior to the onset of winter diapause.
3. Even when eggs were reared with an ad libitum food supply, minor morphs were still observed. Individuals that were oviposited later in the season had less time to feed, shorter development times, eclosed as smaller individuals and, in the case of males, were more likely to be hornless. Major morphs, minor morphs, and females all reduced their body size in response to seasonal time constraints in the same way. However, males that were laid later in the season had faster development times than females laid at the same time, but showed no reduction in their size relative to females, suggesting seasonal time constraints increase growth rates in males but not in females.
4. No evidence was found that seasonal time constraints resulted in a reduction of size-corrected fat reserves at eclosion, or that minor morphs gained any developmental advantage by reducing investment in horn length.  相似文献   

2.
Males of the horned beetle Onthophagus acuminatus Har. (Coleoptera: Scarabaeidae) exhibit horn length dimorphism due to a sigmoidal allometric relationship between horn length and body size: the steep slope of the allometry around the inflection of the sigmoid curve separates males into two groups; those larger than this inflection possess long horns, and those smaller than this inflection have short horns or lack horns. I examined the genetic basis of the allometric relationship between horn length and body size by selecting males that produced unusually long horns, and males that produced unusually short horns, for their respective body sizes. After seven generations of selection, lines selected for relatively long horns had significantly longer horn lengths for a given body size than lines selected for relatively short horns, indicating a heritable component to variation in the allometry. The sigmoidal shape of the allometry was not affected by this selection regime. Rather, selected lines differed in the position of the allometry along the body size axis. One consequence of lateral shifts in this allometric relationship was that the body size separating horned from hornless males (the point of inflection of the sigmoid curve) differed between selection lines: lines in which males were selected for relatively long horns began horn production at smaller body sizes than lines selected for relatively short horns. These results suggest that populations can evolve in response to selection on male horn length through modification of the growth relationship between horn length and body size.  相似文献   

3.
Male dung beetles (Onthophagus taurus) facultatively produce a pair of horns that extend from the base of the head: males growing larger than a threshold body size develop long horns, whereas males that do not achieve this size grow only rudimentary horns or no horns at all. Here we characterize the postembryonic development of these beetles, and begin to explore the hormonal regulation of horn growth. Using radioimmune assays to compare the ecdysteroid titers of horned males, hornless males, and females, we identify a small pulse of ecdysteroid which is present in both hornless males and females, but not in horned males. In addition, we identify a brief period near the end of the final (third) larval instar when topical applications of the juvenile hormone analog methoprene can switch the morphology of developing males. Small, normally hornless, males receiving methoprene during this sensitive period were induced to produce horns in 80% of the cases. We summarize this information in two models for the hormonal control of male dimorphism in horn length.  相似文献   

4.
Sexual selection has traditionally been divided into competitionover mates and mate choice. Currently, models of sexual selectionpredict that sexual traits are expressed in proportion to thecondition of their bearer. In horned beetles, male contestcompetition is well established, but studies on female preferencesare scarce. Here I present data on male mating success and condition dependence of courtship rate in three species of horn-dimorphicdung beetles, Onthophagus taurus, Onthophagus binodis, andOnthophagus australis. I found that in the absence of malecontest competition, mating success of O. taurus and O. australiswas unrelated to their horn length and body size, whereas inO. binodis horn size had a negative effect but body size hada positive effect on male mating success. Overall, in O. binodismajor morph males had greater mating success than minor morphmales. In all three species male mating success was affectedby courtship rate, and the courtship rate was condition dependent such that when males were manipulated to be in poor conditionthey had lower courtship rates than males that were manipulatedto be in good condition. My findings provide new insight intothe mating systems of horned dung beetles and support an importantassumption in indicator models of sexual selection.  相似文献   

5.
Male horn length in some horned beetles shows a sigmoidal relationship with body size. This has often been considered as the reflection of alternative reproductive tactics of males based on body size. Large males should possess long horns to acquire females through fights with other males using their horns, whereas small males do not require long horns because they usually avoid intermale fights and adopt alternative tactics such as sneaking. This may lead to a prediction that horn length is a reliable indicator of the fighting ability of the male. We examined the effects of both male horn length and body size of Allomyrina dichotoma on the outcomes of escalated fights. Results indicate that male horn length was more important than body size in predicting the outcomes of fight, and this may support the hypothesis that the evolution of the horn dimorphism in male horned beetles is the result of different reproductive tactics.  相似文献   

6.
The existence of discrete phenotypic variation within one sex poses interesting questions regarding how such intrasexual polymorphisms are produced and modified during the course of evolution. Approaching these kinds of questions requires insights into the genetic architecture underlying a polymorphism and an understanding of the proximate mechanisms determining phenotype expression. Here we explore the genetic underpinnings and proximate factors influencing the expression of beetle horns – a dramatic sexually selected trait exhibiting intramale dimorphism in many species. Two relatively discrete male morphs are present in natural populations of the dung beetle Onthophagus taurus (Scarabaeidae, Onthophagini). Males exceeding a critical body size develop a pair of long, curved horns on their heads, while those smaller than this critical body size remain essentially hornless. We present results from laboratory breeding experiments designed to assess the relative importance of inherited and environmental factors as determinants of male morphology. Using father–son regressions, our findings demonstrate that horn length and body size of male progeny are not predicted from paternal morphology. Instead, natural variation in an environmental factor, the amount of food available to larvae, determined both the body sizes exhibited by males as adults and the presence or absence of horns. The nonlinear scaling relationship between the body size and horn length of males bred in the laboratory did not differ from the pattern of variation present in natural populations, suggesting that nutritional conditions account for variation in male morphology in natural populations as well. We discuss our results by extending ideas proposed to explain the evolution of conditional expression of alternative phenotypes in physically heterogeneous environments toward incorporating facultative expression of secondary sexual traits. We use this synthesis to begin characterizing the potential origin and subsequent evolution of facultative horn expression in onthophagine beetles.  相似文献   

7.
Developmental mechanisms play an important role in determining the costs, limits, and evolutionary consequences of phenotypic plasticity. One issue central to these claims is the hypothesis of developmental decoupling, where alternate morphs result from evolutionarily independent developmental pathways. We address this assumption through a microarray study that tests whether differences in gene expression between alternate morphs are as divergent as those between sexes, a classic example of developmental decoupling. We then examine whether genes with morph‐biased expression are less conserved than genes with shared expression between morphs, as predicted if developmental decoupling relaxes pleiotropic constraints on divergence. We focus on the developing horns and brains of two species of horned beetles with impressive sexual‐ and morph‐dimorphism in the expression of horns and fighting behavior. We find that patterns of gene expression were as divergent between morphs as they were between sexes. However, overall patterns of gene expression were also highly correlated across morphs and sexes. Morph‐biased genes were more evolutionarily divergent, suggesting a role of relaxed pleiotropic constraints or relaxed selection. Together these results suggest that alternate morphs are to some extent developmentally decoupled, and that this decoupling has significant evolutionary consequences. However, alternative morphs may not be as developmentally decoupled as sometimes assumed and such hypotheses of development should be revisited and refined.  相似文献   

8.
The breeding system, floral morphology, morph frequency, biomass allocation to floral whorls, pollination and reproductive efficiency were examined in four distylous and three monomorphic Melochia species. Monomorphic species were self-compatible and distylous species were self-incompatible. Flowers of homomorphic species were longer than those of distylous species. Herkogamy was significantly higher in pin than in thrum morphs of the two distylous species, and monomorphic species exhibited the lowest values of herkogamy. Pollen/ovule ratios were similar between monomorphic and dimorphic species, irrespective of the self-incompatibility level. Biomass allocation to flowers was biased toward non-sexual structures, attraction and support. Androecium biomass and androecium/gynoecium biomass ratio were larger in thrum than in pin flowers of distylous species indicating maleness in the thrum morph and femaleness in the pin morph. There was no clear difference between fruit set of monomorphic and dimorphic species; however, the greatest fruit set was found in the monomorphic species, M. pyramidata, which is a self-compatible species. Fruit set was significantly higher in pin than in thrum morphs in three out four distylous species and fecundity was only significantly higher in pin morphs of M. caracasana and M. parvifolia. Melochia species have generalist pollination systems. According to the taxonomic classes and number of pollinator species, M. caracasana and M. parvifolia have similar generalist pollination systems. Our comparative analyses of the characters between floral morphs of distylous species and the relationship with these characters in monomorphic species allow divergences and similarities to be established and different evolutionary trends to be postulated in the breeding systems of Melochia species. Specifically, M. parvifolia and M. caracasana are apparently biased toward monomorphy and dioecy, respectively.  相似文献   

9.
10.
Abstract 1. Polymorphism has been described for a number of herbivorous insects, but little is known about whether differences in body colour cause fitness differences. In Chorthippus parallelus, three main colour morphs occur, namely brown, green, and dorsally striped. 2. The present study examined colour morph abundances and morph‐related differences in body size, oviposition rate, and offspring numbers in females of C. parallelus collected in 15 montane grasslands. The study also examined the effect of plant species richness, composition, community productivity, and solar radiation on colour morph frequency and fitness. 3. The relative frequencies of the three colour morphs was 31.7% (brown), 33.1% (green), and 35.2% (dorsally striped), but the morphs were not evenly distributed across the 15 sites. 4. There was no effect of the habitat variables on the distribution of the green and the striped morph in the study sites, however 80% of the variation in the abundances of the brown morph was explained by plant species richness and composition. 5. Grasshopper size was equal among the morphs. Brown females laid significantly more egg pods than the green and dorsally striped morphs. There were no significant differences in offspring numbers among the colour morphs. 6. Body colour in C. parallelus seems to be a fitness‐relevant trait, raising the question of the evolutionary maintenance of polymorphism.  相似文献   

11.
Most studies on sexual size dimorphism address proximate and functional questions related to adults, but sexual size dimorphism usually develops during ontogeny and developmental trajectories of sexual size dimorphism are poorly understood. We studied three bird species with variation in adult sexual size dimorphism: black coucals (females 69% heavier than males), white-browed coucals (females 13% heavier than males) and ruffs (males 70% heavier than females). Using a flexible Bayesian generalized additive model framework (GAMM), we examined when and how sexual size dimorphism developed in body mass, tarsus length and bill length from hatching until fledging. In ruffs, we additionally examined the development of intrasexual size variation among three morphs (Independents, Satellites and Faeders), which creates another level of variation in adult size of males and females. We found that 27–100% of the adult inter- and intrasexual size variation developed until fledging although none of the species completed growth during the observational period. In general, the larger sex/morph grew more quickly and reached its maximal absolute growth rate later than the smaller sex/morph. However, when the daily increase in body mass was modelled as a proportion, growth patterns were synchronized between and within sexes. Growth broadly followed sigmoidal asymptotic models, however only with the flexible GAMM approach, residual distributions were homogeneous over the entire observation periods. These results provide a platform for future studies to relate variation in growth to selective pressures and proximate mechanisms in these three species, and they highlight the advantage of using a flexible model approach for examining growth variation during ontogeny.  相似文献   

12.
Abstract 1. The form of asymmetry in bilateral organs usually follows the same pattern within single populations. However, some exceptions may occur when a population consists of different phenotypes that are from different ontogenic backgrounds and under different selective pressures. We investigated the asymmetric patterns of mandibles of larvae, females, and males in the stag beetle Prosopocoilus inclinatus. 2. Larval mandibles exhibited directional asymmetry both in length and cross direction, whereas female mandibles showed directional asymmetry in cross direction. These asymmetric structures might be more effective in cutting wood fibres. 3. For the relation of male mandible length to body size, a model with a switch point showed a better fit to the data than a convex curve model. This shows that the males are dimorphic with two distinct morphs. 4. The form of asymmetry in male mandible length differed between the morphs. The smaller males exhibited left‐biased directional asymmetry in common with larvae, whereas the larger males exhibited fluctuating asymmetry. 5. This is a novel finding of a morph‐dependent asymmetry. The morph‐dependent asymmetry in males may be as a result of different selection on each morph or a developmental constraint from larval mandibles to adult ones.  相似文献   

13.
Developmental mechanisms of threshold evolution in a polyphenic beetle   总被引:4,自引:0,他引:4  
Polyphenic development is thought to play a pivotal role in the origin of morphological novelties. However, little is known about how polyphenisms evolve in natural populations, the developmental mechanisms that may mediate such evolution, and the consequences of such modification for patterns of morphological variation. Here we examine the developmental mechanisms of polyphenism evolution in highly divergent natural populations of the dung beetle, Onthophagus taurus. Males of this species express two alternative morphologies in response to larval feeding conditions. Favorable conditions cause males to grow larger than a threshold body size and to develop a pair of horns on their heads. Males that encounter relatively poor conditions during larval life do not reach this threshold size and remain hornless. Exotic populations of O. taurus have diverged dramatically in body size thresholds in less than 40 years since introduction to new habitats, resulting in the expression of highly divergent and novel horn length-body size scaling relationships in these populations. Here we show that larvae of populations that have evolved a larger threshold body size (1) have to accumulate greater mass to become competent to express the horned morph, (2) require more time to complete the final instar, (3) are less sensitive to the juvenile hormone (JH) analogue methoprene, and (4) exhibit a delay in the sensitive period for methoprene relative to other developmental events. JH has been shown previously to control horn expression in this species. Our results show that threshold evolution may be mediated via changes in the degree and timing of sensitivity to JH and may result in correlated changes in the dynamics and duration of larval development. Strain-specific differences in JH sensitivity have previously been demonstrated in other insects. However, to the best of our knowledge this is the first demonstration that changes in the timing of the sensitive period for JH may play an equally important role in the evolution of novel thresholds. We discuss our findings in the context of the developmental regulatory mechanisms that underlie polyphenic development and use our results to explore the consequences of, and constraints on, polyphenism evolution in nature.  相似文献   

14.
Stigma-height dimorphism is a sexual polymorphism in which plant populations are composed of two floral morphs that differ significantly in style length but not anther position. The morphs exhibit approach and reverse herkogamy, floral designs that in most species typically occur as monomorphic conditions. We investigated the floral biology of stigma-height dimorphism in the Mediterranean geophyte Narcissus papyraceus (Amaryllidaceae) in an effort to understand the evolutionary forces maintaining stylar polymorphism. Our survey of 66 populations in Spain, Portugal, and Morocco indicated that 56% were dimorphic with the long-styled morph at an average frequency of 0.79. The remaining 44% of populations sampled were monomorphic for the long-styled morph. In dimorphic populations there was a significant positive relation between population size and the frequency of the short-styled morph. Controlled pollinations demonstrated that N. papyraceus is self-sterile with no significant differences in female fertility between intra- and intermorph crosses. Prior self-pollination reduced seed set in flowers that were subsequently cross-pollinated. Estimates of mating patterns using allozyme markers in eight populations indicated that N. papyraceus is largely outcrossing (mean t(m) = 0.81) with no significant differences between monomorphic and dimorphic populations or style morphs. Stigma-height dimorphism in N. papyraceus is maintained in populations by insect-mediated cross-pollination with biased morph ratios and stylar monomorphism likely resulting from the combined influence of the inheritance of the polymorphism, morph-specific differences in assortative mating and founder effects.  相似文献   

15.
Onthophagus taurus is a polyphenic beetle in which males express alternative major (horned) and minor (hornless) morphologies largely dependent on larval nutrition. O. taurus was originally limited to a Turanic-European-Mediterranean distribution, but became introduced to several exotic regions in the late 1960s. Using geometric morphometrics, we investigate the present-day morphological shape differentiation patterns among native (Italian) and introduced (Western Australian and Eastern US) populations. We then contrast these divergences to those observed between native O. taurus and its sympatric sister species O. illyricus. Our analysis failed to find significant divergences between O. taurus populations in external morphological traits (head, pronotum) when analyses were conducted separately for each sex. However, when sexes and male morphs were analyzed together, three important differences among populations emerged. First, relative warp analyses showed that native and introduced populations diverged in certain shape components that normally distinguish major and minor male morphs. Second, comparison of covariation of body regions (head vs. pronotum) in the three populations showed that populations diverged in the nature of this covariation, suggesting that different body regions are not totally constrained to evolve in concert. Lastly, and most importantly, the analysis of genitalic shape revealed little to no divergence of female genitalia, but unexpected substantial differentiation of male genitalia among the three O. taurus populations. This suggests that genitalic shape divergence can occur extremely rapidly even in the absence of sympatry and possible reinforcement, and that the genitalia of males and females may diverge independent of one another, at least during the early stage of interpopulational divergence. Interpopulation divergences in O. taurus mirrored aspects of interspecific divergences between O. taurus and O. illyricus in some cases but not others.  相似文献   

16.
The causes and consequences of sexual dimorphism are major themes in biology. Here we explore the endocrine regulation of sexual dimorphism in horned beetles. Specifically, we explore the role of juvenile hormone (JH) in regulating horn expression in females of two species with regular sexual dimorphism for pronotal horns (females have much shorter horns than males) and a third species with a rare reversed sexual dimorphism for both pronotal and head horns (females have much larger horns in both body regions compared with males). Applications of the JH analog methoprene caused females of the two more typical species to grow significantly shorter pronotal horns than control females, whereas no consistent effect on pronotal horn development was detected in the third, sex-reversed species. Instead, females in this species showed an unexpected and significant increase in head horn expression in response to methoprene treatment. Lastly, horn shape was also affected in females of one of the regularly sexually dimorphic species, but in the opposite direction than horn length. Although methoprene exerted a feminizing effect on female horn length in this species, it significantly masculinized horn shape by inducing a peculiar shape change observed naturally only in males. Our results suggest that JH influences both overall size and shape of female horns, but does so flexibly and as a function of species, sex and horn location. We use our results to review current models on the role of endocrine mechanisms in development and evolution of horned beetle diversity.  相似文献   

17.
18.
棕背伯劳羽色多态现象探讨   总被引:6,自引:0,他引:6  
羽色多态现象的研究对了解物种的遗传、变异和进化有着重要意义。棕背伯劳(Lanius schach)具有典型的羽色多态现象。结合华南濒危动物研究所馆藏标本和2005年4月—2007年1月间的野外调查,分析棕背伯劳棕色型和黑色型在形态和地理分布上的差异性后,得到的结果如下:1)广东可能存在与棕色型、黑色型相区别的一种新色型——黑色白边型,该色型全身以黑色为主,但具多枚白色飞羽;2)棕色型与黑色型各身体量度均无显著性差异(P>0.05);3)野外种群中棕色型为优势色型,黑色型多集中于沿海地区而山区未有发现,黑色白边型仅在沿海的海丰县被发现。据此认为新色型的出现说明沿海可能是黑色型分化的重要地区,且色型的分化仍在进行中。  相似文献   

19.
Non-random mating in plant populations can be influenced by numerous reproductive and demographic factors, including floral morphology and inter-plant distance. Here, we investigate patterns of outcrossed mating through male function in Narcissus triandrus, a tristylous, bee-pollinated wild daffodil from the Iberian Peninsula, to test pollen transfer models which predict that floral morphology promotes asymmetrical mating and biased morph ratios. Unlike other tristylous species, N. triandrus has an incompatibility system that permits intra-morph mating and long-level rather than mid-level stamens in the L-morph. Incomplete sex-organ reciprocity should result in significant intra-morph mating in the L-morph. We measured mating patterns in two L-biased populations--dimorphic (two style morphs) and trimorphic (three style morphs)--using multilocus genotyping and maximum-likelihood-based paternity analysis. We also examined the spatial distribution of style morphs and neutral markers to investigate the potential consequence of spatially restricted mating on morph ratios. As predicted, we detected significant amounts of intra-morph mating in the L-morph in both populations. Pollen transfer coefficients generally supported predictions based on the Darwinian hypothesis that anthers and stigmas of equivalent level promote pollinator-mediated cross-pollination in heterostylous populations. There was evidence of significant spatial aggregation of both style morphs and neutral markers in populations of N. triandrus, probably as a result of restricted pollen and seed dispersal. Our results provide empirical support for theoretical models of pollen transfer, which indicate that the commonly observed L-biased morph ratios in Narcissus species result from significant intra-morph mating in the L-morph because of its atypical floral morphology.  相似文献   

20.
Takahashi  Tetsumi 《Hydrobiologia》2021,848(16):3655-3665

Telmatochromis temporalis is a cichlid fish endemic to Lake Tanganyika. Two morphs of this species, normal and dwarf, form a good model for the study of ecological speciation through divergent natural selection on body size. This study reports a third morph of this species, slender morph, which was collected from deep waters off Kasenga, Zambia, whereas the normal morph inhabits shallow waters of the same locality. This study examined morphological characters and mitochondrial DNA sequences in 18 populations of the three T. temporalis morphs and two closely related species. The slender morph was morphologically similar to the normal and dwarf morphs of the same species, but clearly differed from closely related species. Genetic analyses showed that the slender morph was closest to but significantly different from the parapatric normal morph, suggesting reproductive isolation between them. Due to the lack of colour differences between morphs and of obvious geographical barriers between habitats, reproductive isolation between these morphs may be attributed to ecological factors, rather than sexual or geographical segregation. Further studies examining the evolution of the slender morph may deepen our knowledge of initial stages of speciation, like in the dwarf morph.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号