首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was aimed to investigate the developmental patterns of leptin mRNA expression in dorsal subcutaneous adipose tissue and Ob-Rb mRNA expression in hypothalamus in pigs of different breeds and sexes. Erhualian gilts and boars and Large White boars were sampled at birth, 3, 20, 30, 45, 90, 120 and 180 days of age, respectively. Serum concentration of leptin was measured with RIA and single tube semi-quantitative RT-PCR was applied to determine the relative abundances of mRNA expression using 18S rRNAas an internal standard. The results showed that leptin mRNA expression in adipose tissue increased with age and displayed both sex and breed differences. In Erhualian pigs, females expressed higher leptin mRNA compared with males, and Erhualian boars showed higher abundance of leptin mRNA than Large White boars (P < 0.01). Serum leptin levels were in good agreement with adipose leptin mRNA, displaying similar sex and line differences. In contrast, expression of Ob-Rb mRNA in hypothalamus exhibited a distinctive pattern, decreased gradually after birth, and then increased till weaning. After weaning, Ob-Rb gene expression decreased gradually with age but rose gradually again from 120 to 180 days of age in Erhualian pigs. The expression of Ob-Rb mRNA was higher in Large White pigs than that in Erhualian pigs (P< 0.01). The results suggest that the serum leptin level and leptin gene expression in adipose tissue highly correlate with adiposity.  相似文献   

2.
Serum leptin levels were significantly increased during rat gestation. Our data showed that leptin mRNA levels in both the adipose tissue and placenta were higher as pregnancy progressed, suggesting a role for both tissues in the hyperproduction of leptin. This paradoxical increase in leptin concentration during gestation suggests that a physiological state of leptin resistance may exist at the hypothalamic level that may explain the hyperphagia observed in pregnant rats. In order to study this issue further, levels of the mRNA encoding the different leptin receptor isoforms were determined in the hypothalamus of pregnant and nonpregnant rats. We found a specific reduction of the mRNA levels encoding the leptin receptor isoform Ob-Rb in the hypothalamus of pregnant rats compared to nonpregnant animals, suggesting that during pregnancy the hypothalamus shows a physiological resistance to the high levels of leptin due, at least in part, to a decrease in the expression of the long, biologically active form of the leptin receptor (Ob-Rb). During lactation, serum leptin levels returned to values observed in nonpregnant rats. In the hypothalami of these animals, Ob-Rb mRNA content was similar to that observed in nonpregnant rats, but we found an increased expression of some of the short forms of the leptin receptor (Ob-Re and Ob-Rf). This could contribute to induction of the hyperphagia present during lactation. These data provide new insights into the adaptive mechanisms that take place during pregnancy and lactation in order to meet increased metabolic requirements.  相似文献   

3.
Migration and hibernation in mammals may be preceded by a period of leptin resistance, which may in part account for the increasing adiposity and body mass that occurs during these periods. We hypothesized that hypothalamic expression of leptin receptor mRNA would decrease during the premigration (PM) period in the little brown myotis, Myotis lucifugus. Body mass of M. lucifugus increased during the PM period, but serum leptin levels did not change during that time. Hypothalamic mRNA levels for both the short (ObRa) and fully active long (ObRb) forms of the leptin receptor increased during PM, but the relative increase in ObRa was larger and occurred sooner than ObRb. mRNA levels of an inhibitor of leptin signaling (protein inhibitor of activated STAT3: PIAS3) increased in hypothalami during the PM period in bats. Adiponectin is an adipokine that has been linked to obesity in rodents; normally, serum levels of adiponectin decrease in obesity. In M. lucifugus, adiponectin mRNA levels decreased in adipose tissue during the period of mass gain, but circulating adiponectin levels did not change. We conclude that the relative changes in leptin receptor isoform expression during the PM fattening period may favor binding of leptin to the less active short isoform. Coupled with increased expression of PIAS3 and the dissociation of serum leptin levels from body mass and adiposity, these changes could account in part for the adaptive fattening during the PM period. In addition, the adipokine profiles of M. lucifugus during the PM period and that of obesity in non-hibernating mammals are strikingly dissimilar.  相似文献   

4.
The aim of this study was to determine the effects of leptin treatment on prepro-orexin and orexin receptor expression in the rat hypothalamus. Adult male rats, food-deprived for 48 and 72 h, were treated one time with vehicle or leptin (10 microg, icv). Prepro-orexin mRNA content was measured by semiquantitative RT-PCR, Northern blot, and in situ hybridization; orexin receptor 1 and 2 mRNA content was quantified by Northern blot and/or semiquantitative RT-PCR. Our results indicate that leptin inhibits a fasting-induced increase in prepro-orexin mRNA and orexin receptor 1 mRNA levels in the rat hypothalamus, while orexin receptor 2 mRNA levels were unchanged in all situations evaluated. These data provide direct evidence for an additional mechanism of adaptation of the hypothalamus to food deprivation and for a new effect of leptin in the regulation of food intake.  相似文献   

5.
To obtain an insight into the influence of aging on leptin gene expression, the responses of leptin mRNA in retroperitoneal and epididymal adipose tissues and plasma leptin concentrations to 24-h food deprivation and refeeding were examined in 2-, 10- and 24-month-old normal rats. The basal level of leptin gene expression in retroperitoneal adipose tissue was significantly higher in 10- and 24-month-old rats than that in 2-month-old rats, while the level in epididymal adipose tissue was highest in 10-month-old rats for all three age groups. The basal concentrations of plasma leptin was significantly higher in 10- and 24-month-old rats than those in 2-month-old rats. The 24-h food deprivation was followed by a significant reduction in leptin mRNA expression in both retorperitoneal and epididymal adipose tissues for all three age groups. The leptin gene expression was restored to control levels 24 h following refeeding in the 2- and 10-month-old rats, but failed to be restored in the 24-month-old rats. In addition, the time course of recovery for leptin mRNA expression by refeeding to the control levels differed between the retroperitoneal and the epididymal adipose tissue in 2- and 10-month-old rats. The concentrations of plasma leptin 24 h following refeeding were compatible with the leptin mRNA levels in adipose tissues in three age groups. These results suggest that the expression of the leptin gene in response to food-deprivation and refeeding is influenced by an animal's age and that this expression is different for different regions of white adipose tissue.  相似文献   

6.
7.
8.
RICCI, MATTHEW R. AND SUSAN K. FRIED. Isoproterenol decreases leptin expression in adipose tissue of obese humans. Obes Res. Objective: We investigated the effects of the non-selective β-adrenergic agonist, isoproterenol (Iso), on leptin expression in human adipose tissue. Research Methods and Procedures: Subcutaneous (SQ) and omental adipose (OM) tissue taken during surgery from 12 morbidly obese subjects (10 women and 2 men) were cultured for up to 24 hours with insulin (7 nM) and/or dexamethasone (25 nM), a synthetic glucocorticoid, in the presence or absence of isoproterenol (10 μM). Adipose tissue was also acutely incubated for 3 hours in media alone with or without isoproterenol. Leptin secretion and leptin mRNA abundance were measured. Results: Iso acutely decreased leptin release by −30% (vs. no hormone controls) in fragments of OM and SQ adipose tissue. In 24-hour culture, addition of Iso (in the presence of insulin) resulted in lower leptin accumulation in the medium (−20–30%) and leptin mRNA levels (−40–50%) from both tissue depots. Culture with insulin and dexamethasone increased leptin expression vs. insulin alone. Addition of Iso with insulin and dexamethasone decreased media leptin (−40–60%) and leptin mRNA levels were lower (−65%) in Iso-treated adipose tissue from both depots after 24 hours. Iso effects were not detectable after 5 hours of culture. Discussion: We conclude that stimulation of β-adrenergic receptors may modulate leptin expression in human adipose tissue by two mechanisms: an acute effect on leptin release and a longer-term antagonism of stimulatory effects of insulin and dexamethasone on leptin mRNA expression. These mechanisms may contribute to the decline in serum leptin that occurs during fasting.  相似文献   

9.
Leptin is a hormone that is produced by adipocytes. Leptin acts on specific receptors in the hypothalamus. RNA was isolated from a lipoblastoma of an 8-year-old girl and the expression of leptin and leptin receptor mRNA was analyzed by RT-PCR. The lipoblastoma tumor, a rare form of childhood tumors, expressed leptin and leptin receptors in a fashion similar to normal adipose tissue. We hypothesize that the peripheral action of leptin via its receptors could play a role in the development and/or progression of lipoblastoma. Whether or not leptin and leptin receptor expression play a role in the development and/or progression of lipoblastoma and other tumors is not clear to date. Copyrightz1999S.KargerAG, Basel  相似文献   

10.
11.
12.
13.
AimsOur aim was to evaluate the effect of exercise training (TR) on adipocyte-size-dependent expression of leptin and adiponectin.Main methodsMale Wistar rats were divided into 2 groups, sedentary control (CR) and TR group, and both monitored for 9 weeks. Adipocytes isolated from epididymal, retroperitoneal, and inguinal fat depots were independently separated into 3 fractions of different cell size, and the relationships between adipocyte size and either leptin or adiponectin mRNA were determined by real-time RT-PCR analysis.Key findingsIn epididymal and inguinal adipose tissue, positive relationships between adipocyte size and both leptin and adiponectin mRNA expression were found. Comparison of TR and CR rats showed no significant effect of TR on the slopes of the linear regression lines of correlation between leptin mRNA and adipocyte size in either adipose tissue, whereas the slopes of the regression line of correlation between adipocyte size and adiponectin mRNA were greater in TR group. Leptin levels per milliliter of plasma were significantly lower in TR than CR rats, whereas leptin levels adjusted to the 3 fat depots did not differ. TR did not affect adiponectin levels in plasma, whereas adiponectin levels adjusted to the 3 fat depots were significantly greater in TR than CR group.SignificanceTR-induced reduction in leptin mRNA expression was closely associated with smaller adipocyte size. However, TR amplified the adipocyte-size-dependent expression of adiponectin mRNA, suggesting that TR-induced alterations in adiponectin mRNA may also be mediated by factor(s) other than adipocyte size.  相似文献   

14.
Objective: Increased leptin transgene expression locally in hypothalamic sites suppresses weight and energy intake, enhances thermogenic energy expenditure, and differentially modulates metabolic hormones for an extended period. We evaluated whether a similar localized expression of leptin transgene in the dorsal vagal complex (DVC) in the caudal brain stem that also displays the biologically relevant leptin receptor would reproduce these varied responses and thus demonstrate functional connectivity between the hypothalamus and DVC. Research Methods and Procedures: Adult female rats were microinjected with a recombinant adeno‐associated virus encoding either rat leptin or green fluorescent protein gene (control) in the DVC. Food intake and body weight were monitored weekly, and metabolic variables were analyzed at the end of 10 weeks. Results and Discussion: Increased leptin transgene expression in the DVC suppressed the time‐related increase in body weight accompanied by a transient decrease in food intake at week 1 post‐injection and little effect on thermogenic energy expenditure. That suppression of weight was due to decreased adiposity is shown by the markedly suppressed white adipose tissue‐derived hormones, leptin and adiponectin. Circulating concentrations of pancreatic insulin, gastric ghrelin, and glucose levels were unchanged. This segregation of the varied effects of leptin expression in hypothalamic sites vs. DVC endorses the view that among the various endocrine organs under sympathetic nervous system control, only those leptin‐activated neural circuits in the hypothalamus that suppress weight and adiposity on a long‐term basis transverse through DVC en route to white adipose tissue.  相似文献   

15.
We investigated the expression levels of leptin receptors in the brain of ovariectomized (OVX) rats. The mean expression level of ob mRNA in adipose tissues of OVX rats was significantly (P < 0.01) lower than that in the SHAM operation group rats, and the mean body weight of OVX rats was significantly (P < 0.01) greater than that in the SHAM group rats. However, there were no differences between serum leptin concentrations in these two groups. The mean level of leptin receptor (OB-R) mRNA expression in the brain tissue and the mean level of long form type OB-R (OB-RL) mRNA expression in the hypothalamus of the OVX rats were significantly (P < 0.05) lower than those in the SHAM group rats. These changes were cancelled by supplementation with 17 beta-estradiol in OVX rats. These results suggested that not only changes in the expression level of ob mRNA in adipose tissue and the serum leptin concentration but also changes in the OB-R mRNA in the brain are involved in the body weight increase in OVX rats and that a decrease in OB-R makes transmission of signals to suppress the amount of food intake difficult, thus leading to an increase in body weight.  相似文献   

16.
Objective: Effects of ectopic expression of the agouti signaling protein were studied on responses to diet restriction and exercise in C57BL/6J (B6) mice and obese B6 mice congenic for the yellow agouti mutation [B6.Cg‐Ay (Ay)]. Research Methods and Procedures: Adult male Ay mice were either kept sedentary or exercised on a running wheel and fed ad libitum or diet restricted until weight matched to ad libitum‐fed B6 control mice. Body composition, plasma lipids, leptin, and adiponectin were measured. mRNA levels for leptin, adiponectin, lipoprotein lipase, and pyruvate dehydrogenase kinase 4 were measured in a visceral (epididymal) and a subcutaneous (femoral) fat depot by real‐time polymerase chain reaction. Results: Correlations among traits exhibited one of three patterns: similar lines for B6 and Ay mice, different slopes for B6 and Ay mice, and/or different intercepts for B6 and Ay mice. Correlations involving plasma leptin, mesenteric and epididymal adipose weights, or low‐density lipoprotein‐cholesterol were most likely to have different slopes and/or intercepts in B6 and Ay mice. mRNA levels for leptin, Acrp30, pyruvate dehydrogenase kinase 4, and lipoprotein lipase in epididymal adipose tissue were not correlated with corresponding levels in femoral adipose tissue. Discussion: The agouti protein interferes with leptin signaling at melanocortin receptors in the hypothalamus of Ay mice. Our results are consistent with the hypothesis that the melanocortin portion of the leptin‐signaling pathway mediates effects primarily on certain fat depots and on some, but not all, components of cholesterol homeostasis.  相似文献   

17.
Summary The large amount of absorbed dietary lipid after feeding a high-fat diet is mainly transported as triacylglycerol (TG)-rich lipoproteins (TRL) in the post-prandial blood and is subsequently distributed to peripheral tissues including adipose and muscle tissues. An in vivo and an in vitro study were conducted to investigate the possible role of post-prandial TRL after high fat feeding in the regulation of obese (ob) gene expression. Adult male Wistar rats were fasted for 48 h and re-fed either a fat-free/high-carbohydrate diet or a high-fat diet for 2, 4, or 8 h and plasma glucose, insulin, TG, and leptin as well as ob mRNA expression in epididymal fat pads were examined. Rats re-fed the high-fat diet had significantly higher plasma TG (p<0.05) and lower plasma leptin and adipose ob mRNA (p<0.05) than those fed the fat-free/high-carbohydrate diet; however, plasma glucose and insulin concentrations were not significantly different between the two groups. Plasma lipid analysis found large amount of TRL in rats fed with high-fat diet; however, only very small amount of the TRL was found in rats fed with fat-free/high-carbohydrate diet. We speculated that TRL might involve in regulation of ob gene expression. To further examine the regulation of TRL on ob mRNA expression, differentiated 3T3-L1 adipocytes were treated with TRL collected from rats fed 5 ml soybean oil by gastric intubations. TRL down-regulated ob mRNA not only in a dose and time dependent manner but also in the presence of insulin in 3T3-L1 adipocytes. These results suggest a possible role of TRL in the down-regulation of adipose ob mRNA expression and may account, at least in part, for the previous observations that short-term high fat feeding resulted in lower plasma leptin.  相似文献   

18.
The expression of leptin receptor (OB-R) is downregulated by leptin in some cell lines. This study investigated the expressions of leptin receptors at central nerve system and peripheral site in a dietary model of obesity. Rats in the 8 week high-diet and control group were classified based on body weight gain into obese and control groups. Serum leptin and insulin concentrations were measured and gene expressions of short form of leptin receptor (OB-Ra) and long form (OB-Rb) in hypothalamus and liver were detected by RT-PCR. The levels of serum leptin in obese rats were increased compared with control rats (p<0.05). The levels of OB-Ra and OB-Rb gene expressions in both hypothalamus and liver in obese rats were reduced significantly (p<0.01). Serum leptin concentrations of obese rats had a significant negative relationship with both of OB-Ra or OB-Rb gene expression levels in hypothalamus and liver (p<0.01). On the other hand, serum insulin levels had no relationship with OB-Ra or OB-Rb gene expression levels in neither liver nor hypothalamus. Rats with diet-induced obesity have hyperleptinemia and reduced expressions of leptin receptors in hypothalamus and liver. The results suggest that a leptin downregulated OB-R expression is one of leptin resistant mechanisms for maintaining obesity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号