首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.  相似文献   

2.
Adenylate cyclase activity was determined in membranes of liver, muscle, white adipose tissue, and brown adipose tissue (BAT) of lean (Fa/) and obese (fa/fa) Zucker rats. Responses were monitored following beta-adrenergic receptor stimulation and addition of GTP, GTP gamma S, or forskolin. beta-Adrenergic responses in liver, white adipose tissue, and BAT were lower in obese than in lean animals. No such difference was observed in muscle membranes. Production of cAMP after addition of guanine nucleotides was lower in liver and white adipose tissue membranes from obese rats compared with their lean littermates. Synthesis of cAMP in muscle membranes of obese animals after addition of GTP was either not different, or slightly higher, than that observed in muscle membranes from lean animals. Furthermore, production of cAMP after forskolin addition to muscle membranes of obese rats was significantly higher than that observed from lean rats under the same conditions. Interestingly, BAT membranes of obese rats were significantly more sensitive to guanine nucleotide activation than those of lean animals. The results confirm recent findings indicating inferior function of G proteins in liver plasma membranes of obese Zucker rats, and extend this observation to adipose tissue. The present results further suggest that the "nonreceptor" components (e.g., G proteins) responsible for the activation of adenylate cyclase in BAT membranes of obese rats are more responsive to stimulation than those of lean animals. Such sensitivity may be related to and perhaps compensate for the reduced thermogenic activity in the obese Zucker rat during the development of obesity.  相似文献   

3.
TSE, ELIZABETH O, FRANCINE M GREGOIRE, BRIGITTE REUSENS, CLAUDE REMACLE, JOSEPH J HOET, PATRICIA R JOHNSON, JUDITH S STERN. Changes of islet size and islet size distribution resulting from protein malnutrition in lean (Fa/Fa) and obese (fa/fa) Zucker rats. Potential alterations in islet size and islet size distribution resulting from protein malnutrition were studied in lean (Fa/Fa) and obese (fa/fa) Zucker rats. The purpose was to investigate whether the distribution of enlarged islets in obese rats was altered by low-protein feeding. Four-week-old, male, lean and obese Zucker rats were fed either a diet containing 20% (w/w) protein (control diet) or a diet containing 5% (w/w) protein (low-protein diet) for 3 weeks. Pancreata were dissected at autopsy and immunostained for insulin. Islet size and distribution were determined by morphometric analysis. Body-weight gain, food intake, and serum insulin and glucose were also measured. After 3 weeks on the diets, serum insulin was significantly lower in both lean (-75%) and obese (-54%) rats fed low protein compared with that in controls. However, obese rats were still hyperinsulinemic compared with lean rats. Protein malnutrition resulted in a shift in distribution of islets to smaller size both in lean and in obese rats, with an increase in the population of small islets (100 μm2) and a decrease in the population of large islets (>20,000 μ;m2). In lean and obese rats fed low protein, β-cell weight was significantly lower, B cell volume fraction tended to decrease, and islet number per section area was significantly elevated when compared with controls. Taken together, these results show that protein deficiency alters the endocrine pancreas in both lean and obese Zucker rats. Although the decrease in islet size and the shift in distribution to smaller islets most likely contribute to the decrease in serum insulin concentration, these changes appear insufficient to normalize hyperinsulinemia in the obese Zucker rat.  相似文献   

4.
R Bertin  M Andriamihaja  R Portet 《Biochimie》1984,66(7-8):569-572
Glycerokinase activity was measured in the brown and white adipose tissues compared with that in the liver obese Zucker rats adapted or not adapted to cold. In white adipose tissue total activity was low but higher in the fa/fa rats than in the Fa/ones; cold adaptation did not modify this activity. In brown adipose tissue specific activity was higher than in white; specific activity was twice as high in the fa/fa rats than in the Fa/-. Cold-adaptation induced an increase in the activity in the Fa rats and a decrease in the fa/fa rats. The results are discussed with regard to the cold-induced increase in the energetic efficiency of the tissue.  相似文献   

5.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

6.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

7.
Measurements of the tissue accumulation of α-amino[1-14C]isobutyrate [1-14C]AIB) in lean (+/?) and obese (fa/fa) Zucker rats showed an augmented tissue/plasma ratio in the liver of the obese animals. In contrast, brown adipose tissue AIB accumulation was lower in the fa/fa animals. In response to a 24h starvation period AIB accumulation was significantly elevated in the liver and plasma of the lean animals and was unchanged in the liver of the fa/fa animals. The circulating concentration of alanine and branched-chain amino acids was elevated in the fa/fa animals as compared to their lean counterparts. These observations suggest that amino acid uptake is not involved in the impaired muscle development observed in the obese Zucker rat and that the ability of brown adipose tissue for amino acid utilization is decreased in the obese animals suggesting that this may partially explain the impaired thermoregulatory capacity observed in brown adipose tissue of obese Zucker rats.  相似文献   

8.
To clarify the role of acyl-CoA synthetase in development of obesity, the mRNA levels and activities were studied in Zucker fatty rats (fa/fa). In Zucker fatty rats compared with their lean littermates, marked enhancement of ACS were observed in adipose tissues. Obese/lean rats ratio of ACS activity and mRNA in abdominal subcutaneous fat (3.3- and 3.9-fold, respectively) were greater than in mesenteric fat (2.0- and 2.2-fold). The enhancement of ACS activity and mRNA in the liver of fatty rats (1.2- and 1.8-fold) were less than those in the adipose tissues. There were no enhancement of ACS activities and mRNA levels in heart tissue of the obese rats. LPL mRNA levels were also enhanced in adipose tissue of fatty rats and obese/lean ratio of LPL mRNA was also higher in abdominal subcutaneous fat than mesenteric fat (6.2- vs 3.1-fold). The larger obese/lean rats ratio of LPL and ACS parameters in abdominal subcutaneous fat than mesenteric fat may be related to the observation that the increase of subcutaneous fat weight was larger than that of mesenteric fat weight in fatty rats (21.1- vs 4.9-fold). Integrated enhancement of LPL and ACS gene expression in adipose tissue may play an important role in the development of obesity.  相似文献   

9.
Leptin is an adipocyte-secreted hormone that binds hypothalamic receptors and potently decreases food intake. Leptin receptor defects in homozygous mutant Zucker fatty ( fa/fa) rats lead to massive obesity, hyperphagia, decreased energy expenditure, and insulin resistance, while the phenotype of heterozygous ( Fa/fa) lean rats lies between lean ( Fa/Fa) and obese ( fa/fa) rats. Whether heterezygotes exhibit specific changes in lipid metabolism in a diet-responsive manner is not clear. Thus, the specific aim of this study was to test whether the presence of one fa allele modulates lipid metabolism and leptin, and whether these effects are exacerbated by high-fat diet. We demonstrate that the presence of one fa allele significantly increases lipogenesis in adipose tissue assessed by glycerol-3-phosphate dehydrogenase (GPDH) and fatty acid synthase (FAS) activities. FAS is more responsive to high-fat diets than GPDH in Fa/fa rats. Adipose tissue leptin levels are significantly higher in fat pads of Fa/fa compared to Fa/Fa rats. Moreover, Fa/fa rats fed high-fat diet show an additional two-fold increase in leptin levels compared to wild type rats on the same diet. Collectively, these results indicate that the presence of one fa allele increase adipocyte lipogenic enzyme activities, which results in hyperleptinemia concurrent with increased adiposity.  相似文献   

10.
To test whether oleoyl-estrone plus a hyperlipidic diet affects body weight in Zucker fa/fa rats, 13-week-old male Zucker obese (fa/fa) rats initially weighing 440-470 g were used. They were fed for 15 days with a powdered hyperlipidic diet (16.97 MJ/kg metabolizable energy) in which 46.6% was lipid-derived and 16.1% was protein-derived energy and containing 1.23 +/- 0.39 μmol/kg of fatty-acyl esters of estrone. This diet was supplemented with added oleoyl-estrone to produce a diet with 33.3 μmol/kg of fatty-acyl estrone. Oral administration of oleoyl-estrone in a hyperlipidic diet (at a mean dose of 0.5 μmol. kg(-1).d(-1)) resulted in significant losses of fat, energy and, ultimately, weight. Treatment induced the maintenance of energy expenditure combined with lower food intake, creating an energy gap that was filled with internal fat stores while preserving body protein, in contrast with the marked growth of controls fed the hyperlipidic diet. Treatment of genetically obese rats with a hyperlipidic diet containing additional oleoyl-estrone resulted in the loss of fat reserves with scant modification of other metabolic parameters, except for lower plasma glucose and insulin levels. The results agree with the postulated role of oleoyl-estrone as a ponderostat signal.  相似文献   

11.
Pathophysiological and pharmacological concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the cerebrospinal fluid (CSF) induce anorexia in normal rats. Obesity in humans and rodents is associated with increased TNF-α messenger RNA and protein levels in various cell types. This suggests that obese individuals may have differential regulation of cytokine production and dissimilar responsiveness to cytokines. In the present study, we investigated the effects of the intracerebroventricular (ICV) microinfusion of TNF-α (50, 100, and 500 ng/rat), IL-1β (1.0, 4.0, and 8.0 ng), and TNF-α (100 ng) plus IL-1β (1.0 ng) on obese (fa/fa) and lean (Fa/Fa) Zucker rats. The results show that: TNF-α and IL-1β, and the concomitant administration of TNF-a and IL-ip decreased the short-term (4 hours), nighttime (12 hours), and total daily food intakes in obese and lean rats; IL-1β was more potent relative to TNF-α; obese rats showed greater responsiveness to IL-1β: 8.0 ng IL-1β, for example, decreased the 12-hour food intake by 52% in obese and 22% in lean rats. On the other hand, obese and lean rats did not exhibit a significantly different responsiveness to the anorexia induced by 50,100, or 500 ng TNF-α at the 4-hour period; and the concomitant ICV administration of TNF-α and IL-1β induced anorexia with additive (4-hour period) or synergistic (12-hour and 24-hour periods) effects in obese rats. The effect of TNF-α plus IL-1β in lean rats was greater than additive for the 12-hour and 24-hour periods. The difference in suppression of total daily food intake by TNF-α plus IL-1β in obese (-43%) versus lean (-23%) rats was significantly different (p<0.01). The results show that obese (fa/fa) and lean (Fa/Fa) Zucker rats have differential responsiveness to the ICV microinfusion of two different classes of cytokines.  相似文献   

12.
Adán  C.  Grasa  M.M.  Cabot  C.  Esteve  M.  Vilà  R.  Masanés  R.  Estruch  J.  Fernández-López  J.A.  Remesar  X.  Alemany  M. 《Molecular and cellular biochemistry》1999,197(1-2):109-115
Young female Zucker fa/fa rats of 370-430 g were implanted with osmotic minipumps releasing 3.5 mol/dayúkg of estrone oleate in liposomes (Merlin-2) into the bloodstream for up to 14 days. Merlin-2 induced a sustained loss of appetite, and a decrease in body weight of 3.5%, which contrasts with the 8.2% increase in controls during the period studied. Plasma insulin, glucose and urea decreased, and liver glycogen increased with Merlin-2 treatment. Plasma ACTH and corticosterone increased to a maximum at the end of the experiment. The expression of the ob gene in adipose tissue was unchanged, and plasma leptin levels were also unchanged by treatment. Estrone levels increased more than 1500-fold, and estrone oleate rose 100-fold during treatment. The fact that estrone oleate had no effect on the leptin levels or expression in obese rats, in contrast with the marked inhibition observed in the lean suggests that the functionality of the leptin receptor is essential for estrone oleate inhibition of the ob gene. This also suggests that leptin may control ob gene expression in white adipose tissue and that estrone oleate may activate this process. The slimming effect of estrone oleate is, thus, not directly dependent on leptin, since both normoleptinemic and hyperleptinemic animals lose fat following treatment nor are the effects on appetite and energy expenditure mediated by leptin. However, leptin levels and the expression of the ob gene are directly linked with estrone oleate function. A possible involvement of leptin in estrone oleate action is postulated. The results support the participation of estrone oleate in the control of body weight and hint at the complexity of its regulation by leptin and glucocorticoids.  相似文献   

13.
This study was designed to monitor the developmental changes in insulinemia and lipogenic enzyme activities in both inguinal adipose tissue and liver during suckling (7, 9, 14, and 17 days of age) and weaning (22 and 30 days of age) on to either a low-fat or a high-fat diet in lean (Fa/fa) and obese (fa/fa) rats. Tissues were removed through surgery and genotypes were retrospectively determined. During suckling, there was no difference in liver enzyme activities between the two groups. In contrast, adipose tissue fatty acid synthetase was increased by 50% and citrate cleavage enzyme and malic enzyme by 30% by 9 days of age. By 17 days of age, there was a threefold elevation in these enzyme activities and 6-phosphogluconic dehydrogenase and a twofold increase in glucose-6-phosphate dehydrogenase per inguinal fat pad in fa/fa versus Fa/fa. Consistent with these results, fat pad weight was increased by 20%, 50%, and 100% at 9, 14, and 17 days of age, respectively, in obese as compared to lean pups. However only by 17 days of age could a slight but significant increase in insulin level be detected in obese pups. Enlargement of inguinal fat pad accelerated after weaning on to a low-fat diet and still more after weaning on to a high-fat diet. Weaning on to a low-fat diet elicited an induction of hepatic lipogenic enzymes two or three times greater in fa/fa than in lean pups, while weaning on to a high-fat diet blunted the differences between genotypes. The lipogenic enzyme activities displayed per total inguinal fat were three to ten times greater in obese than in lean pups, regardless of the diet. However, adipose tissue lipogenic enzyme activities were much lower after weaning on to a high-fat than on to a low-fat diet in obese pups. The high-fat diet was as effective as the low-fat diet in triggering hyperinsulinemia in obese pups. The increased adipose tissue capacity for lipogenesis, starting during the suckling period, could play an important etiologic role in the development and maintenance of obesity in the Zucker rat.-Bazin, R., and M. Lavau. Development of hepatic and adipose tissue lipogenic enzymes and insulinemia during suckling and weaning on to a high-fat diet in Zucker rats.  相似文献   

14.
15.
16.
We previously reported that serotonergic activity was reduced in the ventromedial hypothalamic nucleus (VMN) of obese vs. lean male Zucker rats. To verify that this reduction was associated with genotype rather than gender, we measured monoamines and their major metabolites in hypothalamic nuclei of ll-week-old female lean (Fa/Fb) and obese (fa/fb) Zucker rats. In addition, since the thermic response to cold is reported to differ between lean and obese rats, some rats were also exposed to 9° or 22° C for 2h to determine if cold exposure altered hypothalamic monoaminergic activity. As in males, levels of 5-hydroxyindoleacetic acid [5-HIAA; major metabolite of serotonin (5-HT)] and the ratio of 5-HIANS-HT were lower in the VMN of obese vs. lean females (P = 0.008, 0.001, respectively). S-HIANS-HT was also reduced in the paraventricular (PVN) and suprachiasmatic nuclei (SCN) of the obese compared to the lean females. Cold exposure significantly stimulated brown fat mitochondria1 GDP binding in lean but not obese rats. Similarly, levels of norepinephrine, dopamine (DA), 5-HIAA, and 5-HT in the PVN, and 5-HIAA in the SCN increased in cold-exposed lean but not obese rats. In contrast, VMN and preoptic 3,4-dihydroxyphenylacetic acid (DOPAC; major metabolite of DA) increased in the cold-exposed obese but not lean animals. We conclude that: (1) the blunted peripheral response to cold in obese vs. lean Zucker rats is accompanied by altered hypothalamic monoaminergic activity, the physiological role of which needs further evaluation; and 2) depressed VMN serotonergic activity is associated with the obese genotype (fa/fa) rather than gender and as such may contribute to the reduced sympathetic and enhanced parasympathetic outflow from the VMN .  相似文献   

17.
It has long been known that the central nervous system (CNS) directly affects pancreatic insulin release. This study was undertaken to determine the effect of the CNS on pancreatic insulin release in three-month-old female lean (Fa/Fa) and hyperinsulinemic obese (fa/fa) Zucker rats. Chloral hydrate (400 mg/kg) was used as the anesthetic agent. The in situ brain-pancreas perfusion model with intact pancreatic innervation was used in this investigation. The study measured insulin secretion in response to a 60-minute glucose stimulus (200 mg/dl). CNS-intact and CNS-functionally ablated obese and lean rats were used. During the 60-minute perfusion period significantly more insulin was released by pancreata from obese rats compared to those from lean rats. In lean rats, about twice as much insulin was released by pancreata from CNS-ablated rats than from CNS-intact rats (P < 0.05), demonstrating a CNS tonic inhibition of insulin secretion. In obese rats, there was no significant difference in insulin released by the pancreata of the CNS-intact and CNS-ablated rats. To determine if there was a masking effect of predominant PNS activity over the SNS in the CNS-intact obese rats, bilateral vagotomy was performed in a group of otherwise CNS-intact obese rats prior to the onset of perfusion. Tonic inhibition was still not observed in the CNS-vagotomized obese rats. In conclusion, hypersecretion of insulin in obese rats is partially due to diminished tonic sympathetic nervous system inhibition of insulin release. These results provide additional evidence regarding abnormal CNS control of insulin secretion in obese Zucker rats.  相似文献   

18.
Objective: To investigate whether chronic administration of the long‐acting glucagon‐like peptide‐1 receptor agonist exendin‐4 can elicit sustained reductions in food intake and body weight and whether its actions require an intact leptin system. Research Methods and Procedures: Male lean and obese Zucker (fa/fa) rats were infused intracerebroventricularly with exendin‐4 using osmotic minipumps for 8 days. Results: Exendin‐4 reduced body weight in both lean and obese Zucker rats, maximum suppression being reached on Day 5 in obese (8%) and Day 7 in lean (16%) rats. However, epididymal white adipose tissue weight was not reduced, and only in lean rats was there a reduction in plasma leptin concentration. Food intake was maximally suppressed (by 81%) on Day 3 in obese rats but was reduced by only 18% on Day 8. Similarly, in lean rats food intake was maximally reduced (by 93%) on Day 4 of treatment and by 45% on Day 8. Brown adipose tissue temperature was reduced from Days 2 to 4. Plasma corticosterone was elevated by 76% in lean but by only 28% in obese rats. Discussion: Chronic exendin‐4 treatment reduced body weight in both obese and lean Zucker rats by reducing food intake: metabolic rate was apparently suppressed. These effects did not require an intact leptin system. Neither does the absence of an intact leptin system sensitize animals to exendin‐4. Partial tolerance to the anorectic effect of exendin‐4 in lean rats may have been due to elevated plasma corticosterone and depressed plasma leptin levels, but other counter‐regulatory mechanisms seem to play a role in obese Zucker rats.  相似文献   

19.
Adult Zucker lean (Fa/?) female rats received a single 250 nmol oral gavage of 3H-labelled oleoylestrone in 0.2 ml of sunflower oil. After one hour, samples of arterial, portal and suprahepatic blood, and lymph were obtained and fractioned to determine the amount of radioactivity present in the form of free estrone, acyl-estrone and hydrophilic estrone esters in the blood of each vessel. Lipoprotein fractions (chylomicra + VLDL, LDL, HDL and lipoprotein-depleted plasma) were also analysed as well as the distribution of absorbed 3H-estrone in the intestine, specific organs and carcass. About one third of the oleoyl-estrone dose recovered was found in the tissues, mainly in the blood, the rest remaining relatively untouched in the intestinal content. High hypothalamic estrone uptake (compared with the rest of the brain) was observed. Data from non-radioactive estrone measurements showed a similar pattern of absorption and tissue distribution to that obtained by 3H-estrone tracking alone. In both cases, most of the estrone present in the intestinal lumen was absorbed as intact oleoyl-estrone, but a significant part was absorbed as free estrone. There is a net transfer of 3H-estrone into portal blood HDL, and part of the 3H-estrone is also loaded into lymph-carried chylomicra. A large share of free estrone is filtered by the liver, but most of the acyl-estrone absorbed passes unaltered. The oral administration of oleoyl-estrone results in significant absorption of the unaltered molecule, which is transferred to lymph-carried chylomicra and also directly to plasma HDLs. It may be inferred that the HDL fraction contains the physiological carrier of oleoyl-estrone in its role of ponderostat signal.  相似文献   

20.
The development of the lipogenic capacity in brown adipose tissue was studied in suckling lean (Fa/fa) and obese (fa/fa) Zucker pups aged from 7 to 22 days. In both lean and obese pups, activities of the two key lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and of citrate cleavage enzyme rose from the early to the late suckling period. Compared with lean pups, 7-day-old fa/fa pups showed a 35% increase in fat accumulation in interscapular brown adipose tissue and a 25% increase in fatty acid synthetase activity. By 10 days of age, fat deposition, lipogenesis in vivo (assessed by the incorporation of 3H from 3H2O into fatty acids) and fatty acid synthetase activity were 1.5-2-fold higher in pre-obese than in lean pups. Compared with lean pups, the increased lipogenesis in vivo observed in brown adipose tissue of 10-day-old pre-obese pups could not entirely account for the difference in fat deposition observed in this tissue, suggesting that additional mechanisms are at play to explain the increased fat content of this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号