首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial distribution of freshwater fish species (Total species and Unique species) in the upper reaches of the Yangtze River was studied, focusing on the spatial distribution of geographic ranges. Two biogeographical indices: environmental resistance (R50), anisotropy (A50) and a fractal dimension method were used to identify the relationship between them and spatial distribution of freshwater fish. R50 quantifies the loss of biotic resemblance occurring from any point in the map to the rest of the study area. A50 quantifies the extent to which the perimeter: area ratio of the geographical ranges of all species whose distributions overlap at any particular location depart from the perimeter of area ratio of a circle. We concluded that the western of the study area is populated by a large number of total and unique species, the eastern part with the total species richness, the middle regions populated by small number of unique species, the mid-west region populated by small number of total species, and the mid-eastern region populated by a large number of total species. We also analyzed how topology affects the spatial arrangement of species, species density has strong curvilinear correlation (species density increases with increased of fractal dimension), the species density in the tributaries is lower than that in mainstream. The results and methods used give us detailed information about the spatial distribution of species, so as to illuminate the species distribution and change by the human activities.  相似文献   

2.
We analysed the range-sizes of 835 Andean passerine species (including 414 endemics and 421 non-endemics) to test for latitudinal and altitudinal Rapoport effects (LRE and ARE). We tested for positive range-size: latitude/altitude correlations using three different methods: (i) Rohde's mid-point method, (ii) species sorted out by altitude, and (iii) a phylogenetic comparative method (CAIC). Using Rohde's mid-point method, the mean latitudinal extent of species does not follow a Rapoport pattern, but the mean latitudinal occupancy of all passerines and non-endemics do increase with latitude. The latitudinal ranges of endemics sorted out by altitude follow a reverse Rapoport effect, but non-endemics support the pattern. CAIC confirms the latitudinal increase in the occupancy of non-endemics, but regressions have low coefficients of determination. The ARE is supported by the mean altitudinal extent of species, but the trend vanishes when controlling for geometric effects. Low-altitude species occupy about the same proportion of the available altitudinal space as do high-altitude ones. Our analyses suggest that latitude and altitude have low explanatory power for understanding the spatial variation in range-sizes at a continental scale. We show how different patterns can emerge from applying different criteria to the analysis of data.  相似文献   

3.
Species distributions and their patterns in geographical space have been studied for several decades and explained by theories such as Janzen's, with respect to the nature of dispersal barriers in the Tropics, and Rapoport's, with respect to range size. However, the roles of specific environmental and geographical factors (e.g. ecological niche breadth, geographical barriers, etc.) in shaping species ranges and distributional patterns remain largely unexplored. The present study analyzed predictions from these two theories via analysis of virtual species with respect to biogeographical patterns: virtual species were created across South America, covering all major environments on the continent, and were used to compare effects of niche breadth, environmental availability, connectivity, seasonality, and the presence of known biogeographical barriers (rivers) in shaping species distributions and biodiversity patterns. Geographical ranges varied from narrow to broad, depending on the location of the seed point when comparing species produced with the same niche breadth. Analysis without consideration of seasonality and barriers produced species with broader distributions in the Tropics and narrower distributions in montane and temperate regions of the continent. When seasonality was included, however, broader ranges were concentrated in temperate regions, thus supporting Janzen's idea. Rapoport's rule of broader geographical ranges at higher latitudes was supported only when seasonality and physical barriers were included but not in species with very narrow or very broad niches, suggesting that this ‘rule’ results from interactions among niche breadth, dispersal capabilities, and dispersal barriers. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 241–250.  相似文献   

4.
Genetic and morphometric variation was examined in eleven island populations of the horse‐shoe bat, Rhinolophus affinis, at the easterly end of this widespread species’ range and encompassing the Australian–Oriental biogeographic interface. Allozyme variation revealed mean heterozygosity levels within islands of 0.047, which is near the mammalian average. However, heterozygosity tended to decline from west to east as populations approached the periphery of the species’ distribution, and was lowest in those islands that were separated by the greatest sea‐crossing from source populations. There is extensive between‐island genetic differentiation (mean FST = 0.40) and relationships between islands are associated with their arrangement in geographical space; genetic distance is correlated with geographical distance and the genetic arrangement of islands is associated with longitude. The arrangement of islands as indicated by variation in body and skull metrics is also associated with their geographical positions, and the metric and genetic measures are themselves associated. While other taxa in the region have shown genetic‐geographical concordances, R. affinis is the only one that displays concordant patterns in metrical features. These patterns in biological diversity are interpreted as arising from the sequential island population structure and clines in key biogeographic gradients.  相似文献   

5.
Recently three biogeographical units were identified along the Chilean coast (the Magellanic Province, an Intermediate Area, and the Peruvian Province), however few studies have focused on the factors and dynamic processes that formed these spatial units (e.g. Rapoport's rule and its causal mechanisms). In this study we used benthic polychaetes of the Chilean coast to evaluate patterns of latitudinal distribution and species richness, and the existence of the three main biogeographical provinces described for the Chilean coast. Additionally, we evaluated the latitudinal Rapoport effects and geometric constraint as a null hypothesis explaining the species richness distribution.
We found that benthic polychaete diversity increased towards southern latitudes. The cluster and ordination (non-metric MultiDimensional Scaling, nMDS) analyses of the distribution data, presented only two statistically significant (bootstrapping techniques) biogeographic provinces along the Chilean coast, with a break occurring between 41° and 42°S. While, our results did not support a latitudinal Rapoport effect, they did support the view that latitudinal Rapoport effects are a local phenomenon, occurring only for the Northeastern Pacific marine taxa. The relationship between latitudinal range extent and mean latitude indicated the existence of two hard boundaries at either extreme of the Chilean coast, limiting the geographical ranges of the species. However, geometric constraints tested using a Monte Carlo simulation approach showed a weak level of mid-domain effect on species richness. Finally, we propose that geometric constraint together with the geomorphology and historical characteristics of the Chilean coast explain the biogeographical patterns of benthic polychaete taxa in Chile.  相似文献   

6.
The Andean mountain range has played an important role in the evolution of South American biota. However, there is little understanding of the patterns of species diversity across latitudinal and altitudinal gradients. In this paper, we examine the diversity of small mammals along the South Central Dry Andes (SCDA) within the framework of two contrasting hypotheses: (a) species richness decreases with increasing elevation and latitude; and (b) species richness peaks at altitudinal midpoints (mid‐domain). We explore the composition of the species pool, the impact of species–area relationships and the Rapoport effect (i.e. size of geographic ranges) along latitudinal and elevational gradients. First, we constructed a database of SCDA small mammals. Then, species richness patterns were analysed through generalized models, and species–area relationships were assessed by log–log regressions; the curvilinear method (c = S/Az) was use to compute richness corrected by area size. Lastly, the Rapoport effect was evaluated using the midpoint method. Our results show: (1) a richness of 67 small mammals along the SCDA, of which 36 are endemic; (2) a hump‐shaped pattern in species richness along elevation and latitudinal gradients; (3) a species–area relationship for both gradients; (4) endemic species corrected by area present a strong and positive relationship with elevation; (5) a Rapoport effect for the latitudinal ranges, but no effect across the elevational gradient; and (6) a major species turnover between 28° and 30° south latitude. This is the first study quantifying the diversity of small mammals encompassing the central Andean region. Overall, our macrogeographic analysis supports the previously postulated role of the Andes in the diversification of small mammals (i.e. in situ cladogenesis) and highlights some basic attributes (i.e. anatomy of geographic ranges; species–area relationships) when considering the consequences of climate change on biodiversity conservation of mountain ecosystems.  相似文献   

7.
Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of mangrove crabs decreases towards the higher latitudes and tested the importance of environmental factors such as Sea Surface Temperature (SST) in creating the latitudinal gradients in species richness of mangrove crabs. A total of 8262 distribution records of 481 species belonging to six families of mangrove crabs including Camptandriidae, Dotillidae, Macrophthalmidae, Ocypodidae, Sesarmidae, and Oziidae were extracted from open-access databases or collected by the authors, quality controlled, cleaned, and analyzed. Species richness was plotted against 5° latitudinal bands in relation to environmental factors. The R software and ArcGIS 10.6.1 were used to analyze the species latitudinal range and richness as well as to map the distribution of mangrove forest, endemic species, species geographical distribution records, and biogeographic regions. The Indo-West Pacific showed the highest species richness of mangrove crabs where more than 65% of species were found in the Indian Ocean and along the western Pacific Ocean. Our results showed that there are 11 significantly different biogeographic regions of mangrove crabs. The highest endemicity rate was observed in the NW Pacific Ocean (29%). Latitudinal patterns of species richness in Macrophthalmidae, Ocypodidae, and Sesarmidae showed an increasing trend from the poles toward the intermediate latitudes including one dip near the equator. However, latitudinal gradients in Camptandriidae, Dotillidae, and Oziidae were unimodal increasing from the higher latitudes towards the equator. Species richness per 5° latitudinal bands significantly increased following mean SST mean (°C), calcite, euphotic depth (m), and mangrove area (km2) across all latitudes, and tide average within each hemisphere. Species richness significantly decreased with dissolved O2 (ml l−1) and nitrate (μmol l−1) over all latitudes and in the southern hemisphere. The climax of global latitudinal species richness for some mangrove was observed along latitudes 20° N and 15°–25° S, not at the equator. This can suggest that temperature is probably the key driver of latitudinal gradients of mangrove crabs’ species richness. Species richness and mangrove area were also highly correlated.  相似文献   

8.
Aim To understand the ecological and historical/evolutionary processes underlying an inverse latitudinal gradient of richness (LGR) using crustacean peracarid species as a model group. Location The Pacific coast of South America, along the Chilean coast between 18° S and 56° S. Methods The LGR was evaluated using a dataset including 320 marine peracarid species reported for the coasts of Chile. Five ecological hypotheses invoking a relationship between species richness and present‐day conditions were tested: species–energy, species–area, Rapoport rescue effect, mid‐domain geometric constraint and niche breadth. Historical/evolutionary hypotheses (i.e. biogeographic conservatism, and diversification rates) were indirectly tested by analysing the latitudinal variation in the taxonomic distinctness, the taxonomic conservatism of the midpoint of the latitudinal range and the degree of nestedness at different taxonomic levels. Results Richness increased poleward, varying approximately eightfold, following an inverse LGR coupled with an increase in bathymetric distribution. Overall this inverse LGR seems robust to uncertainties in the completeness of the species inventory. We found support for only two of the five ecological hypotheses tested: species–area and Rapoport rescue effect. Historical/evolutionary hypotheses seemed important in structuring the richness pattern, as indicated by the higher taxonomic distinctness in the southern region, the strong taxonomic inertia in the mean range size and the high degree of nestedness of assemblages at different taxonomic levels. Conclusions When combined, these results underscore the importance of long‐term processes and historical/evolutionary explanations for the inverse LGR, conceptualized in what we term the ‘out of the deep south’ hypothesis that involves the effects of both biogeographic niche conservatism and evolutionary rates. We propose that the southern region may be a source of evolutionary novelties and/or exhibit higher diversification rates (i.e. higher speciation/lower extinction rates). Furthermore, phylogenetic conservatism of latitudinal range may limit the geographic expansion of these new taxa towards the depauperated northern region.  相似文献   

9.
Is the Rapoport effect widespread? Null models revisited   总被引:1,自引:0,他引:1  
Aim  To test the Rapoport effect using null models and data sets taken from the literature. We propose an improvement on an existing method, testing the Rapoport effect in elevational and latitudinal distributions when distributions are restricted by sampling.
Location  Global.
Methods  First, we hypothesized that real range size distributions are similar to those expected by null assumptions (expected by only imposing boundaries to species distributions). When these distributions were different from those expected under the null assumptions, we tested the hypothesis that these distributions correspond to those expected when a Rapoport effect occurs. We used two simulation methods, random and pseudo-random, which differed only in that the latter one assumes fixed species mid-points, coinciding with real mid-points. Observed correlations between range size and mid-point were compared with the frequency distribution of 1000 simulations, using both simulation methods. We compared the correlation curves generated by 1000 simulations with those of the observed distributions, testing whether correlations indicated a Rapoport effect.
Results  Several significant patterns of correlations between range size and mid-point were observed in the data sets when compared with random and pseudo-random simulations. However, few of these correlations were consistent with a Rapoport effect.
Main conclusions  Although some recent studies are consistent with a Rapoport effect, our results suggest that the Rapoport effect is not a widespread pattern in global ecology.  相似文献   

10.
Latitudinal and elevational richness gradients have received much attention from ecologists but there is little consensus on underlying causes. One possible proximate cause is increased levels of species turnover, or β diversity, in the tropics compared to temperate regions. Here, we leverage a large botanical dataset to map taxonomic and phylogenetic β diversity, as mean turnover between neighboring 100 × 100 km cells, across the Americas and determine key climatic drivers. We find taxonomic and tip‐weighted phylogenetic β diversity is higher in the tropics, but that basal‐weighted phylogenetic β diversity is highest in temperate regions. Supporting Janzen's ‘mountain passes’ hypothesis, tropical mountainous regions had higher β diversity than temperate regions for taxonomic and tip‐weighted metrics. The strongest climatic predictors of turnover were average temperature and temperature seasonality. Taken together, these results suggest β diversity is coupled to latitudinal richness gradients and that temperature is a major driver of plant community composition and change.  相似文献   

11.
The geographical dichotomy hypothesis suggests that columnar cacti in the tropics depend primarily on bats for pollination. This dependence may to be less in the outer tropics where many columnar cactus species (or their populations) show a relatively generalized pollination system with both nocturnal (moths and bats) and diurnal pollinators (bees and hummingbirds) (geographical dichotomy hypothesis). This hypothesis has been mostly tested in the northern tropics; nonetheless, our knowledge of columnar cactus species inhabiting the southern tropics is still scarce. The aim of this project was to evaluate the pollination biology of Oreocereus celsianus, a columnar cactus with restricted distribution in the subtropical Andes, to determine if the pollination system of this cactus tends to be more generalized than specialized because of the geographical position where it occurs. Observations of frequency of visit showed that Patagona gigas (Giant Hummingbird) is the main pollinator of the flowers, visiting them when they are opening (afternoon of the first day). Bees, wasps and moths were occasional visitors of the flowers. None of them seem to act as pollinator. Autogamy, geitonogamy and xenogamy treatments produced high fruit set, showing that O. celsianus has an unusual mixed mating system. The results suggest that this Andean columnar cactus is partially specialized on hummingbirds, with most pollination service performed by a single species, and it has the capacity of selfing (??fail-safe?? pollination system). This mixed mating system (both outcrossing and selfing) may be a response to the unpredictable environment of the Prepuna in the subtropical Andes.  相似文献   

12.
According to the global latitudinal diversity gradient, a decrease in animal and plant species richness exists from the tropics towards higher latitudes. The aim of this study was to describe the latitudinal distribution patterns of Chilean continental flora and delineate biogeographic regions along a 4270‐km north–south gradient. We reviewed plant lists for each of the 39 parallels of continental Chile to build a database of the geographical distribution of vascular plant species comprising 184 families, 957 genera and 3787 species, which corresponded to 100%, 94.9% and 74.2% of the richness previously defined for Chile, respectively. Using this latitudinal presence–absence species matrix, we identified areas with high plant richness and endemism and performed a Cluster analysis using Jaccard index to delineate biogeographic regions. This study found that richness at family, genus and species levels follow a unimodal 4270‐km latitudinal distribution curve, with a concentration of richness in central Chile (31–42°S). The 37th parallel south (central Chile) presented the highest richness for all taxonomic levels and in specific zones the endemism (22–37°S) was especially high. This unimodal pattern contrasts the global latitudinal diversity gradient shown by other studies in the Northern hemisphere. Seven floristic regions were identified in this latitudinal gradient: tropical (18–22°S), north Mediterranean (23–28°S), central Mediterranean (29–32°S), south Mediterranean (33–37°S), north temperate (38–42°S), south temperate (43–52°S) and Austral (53–56°S). This regionalization coincides with previous bioclimatic classifications and illustrates the high heterogeneity of the biodiversity in Chile and the need for a reconsideration of governmental conservation strategies to protect this diversity throughout Chile.  相似文献   

13.
Aim To test the hypothesis that plant species with a higher dispersal ability have a lower beta diversity. Location North America north of Mexico. Method Propagules of pteridophytes (ferns and their allies) are more vagile than propagules of spermatophytes (gymnosperms and angiosperms), and thus pteridophytes have a higher dispersal ability than do spermatophytes. The study area was divided into 71 geographical units distributed in five latitudinal zones. Species lists of pteridophytes and spermatophytes were compiled for each geographical unit. Three measures of beta diversity were used: βsim, which is one minus the Simpson index of similarity, βslope, which is the slope of the relationship between Simpson index and geographical distance, and β0.5‐distance, which is the distance that halves the similarity from its initial value. Results Average βsim is higher for spermatophytes than for pteridophytes, regardless of whether the data are analysed for the whole continent or for latitudinal zones. Average βsim decreases with increasing latitude for both spermatophytes and pteridophytes. The difference in average βsim between the two plant groups increases with increasing latitude, indicating that beta diversity decreases with increasing latitude faster for pteridophytes than for spermatophytes. When the Simpson index is regressed against geographical distance, the regression slope (βslope) is steeper for spermatophytes than for pteridophytes, and the slope decreases with increasing latitude for both plant groups. Similarly, β0.5‐distance was shorter for spermatophytes than for pteridophytes in each latitudinal zone and increased with increasing latitude for both plant groups. The results of the analyses using the three different measures of beta diversity are consistent. Main conclusions The fact that beta diversity is lower for pteridophytes with vagile propagules than for spermatophytes with less vagile propagules suggests that beta diversity is negatively related to dispersal ability.  相似文献   

14.
Phylogeographic studies often infer historical demographic processes underlying species distributions based on patterns of neutral genetic variation, but spatial variation in functionally important genes can provide additional insights about biogeographic history allowing for inferences about the potential role of adaptation in geographic range evolution. Integrating data from neutral markers and genes involved in oxygen (O2)‐transport physiology, we test historical hypotheses about colonization and gene flow across low‐ and high‐altitude regions in the Ruddy Duck (Oxyura jamaicensis), a widely distributed species in the New World. Using multilocus analyses that for the first time include populations from the Colombian Andes, we also examined the hypothesis that Ruddy Duck populations from northern South America are of hybrid origin. We found that neutral and functional genes appear to have moved into the Colombian Andes from both North America and southern South America, and that high‐altitude Colombian populations do not exhibit evidence of adaptation to hypoxia in hemoglobin genes. Therefore, the biogeographic history of Ruddy Ducks is likely more complex than previously inferred. Our new data raise questions about the hypothesis that adaptation via natural selection to high‐altitude conditions through amino acid replacements in the hemoglobin protein allowed Ruddy Ducks to disperse south along the high Andes into southern South America. The existence of shared genetic variation with populations from both North America and southern South America as well as private alleles suggests that the Colombian population of Ruddy Ducks may be of old hybrid origin. This study illustrates the breadth of inferences one can make by combining data from nuclear and functionally important loci in phylogeography, and underscores the importance of complete range‐wide sampling to study species history in complex landscapes.  相似文献   

15.
Allozyme diversity and population genetic structure studies were conducted in populations of two Mexican cycad species occurring in adjacent and closely related biogeographic regions. We evaluated if rarity traits in Dioon caputoi, a micro-endemic species, and Dioon merolae, a regional endemic with a wider distribution, influence levels of genetic diversity in different ways. We also explored if genetic structure differs in these species, considering that they have similar population histories. Our results indicate that D. caputoi harbors lower levels of genetic diversity and allelic richness (H E = 0.358, P = 76.9, A r = 1.86) than D. merolae (H E = 0.446, P = 92.3, A r = 2). However, genetic structure does not differ between the two species despite their contrasting geographic distributions (F ST = 0.06 vs. 0.07; D. caputoi and D. merolae, respectively). The comparison of population genetic structure information with historical and geographical aspects of the populations suggests that the rarity of D. caputoi might be due to relatively recent local ecological factors.  相似文献   

16.
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega‐phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species‐rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the ‘generalized diversification rate’ hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.  相似文献   

17.
Limited filling of the potential range in European tree species   总被引:8,自引:2,他引:8  
The relative roles of environment and history in controlling large‐scale species distributions are important not only theoretically, but also for forecasting range responses to climatic change. Here, we use atlas data to examine the extent to which 55 tree species fill their climatically determined potential ranges in Europe. Quantifying range filling (R/P) as realized/potential range size ratios using bioclimatic envelope modelling we find mean R/P = 38.3% (±30.3% SD). Many European tree species naturalize extensively outside their native ranges, providing support for interpreting the many low R/Ps as primarily reflecting dispersal limitation. R/P increases strongly with latitudinal range centroid and secondarily with hardiness and decreases weakly with longitudinal range centroid. Hence, European tree species ranges appear strongly controlled by geographical dispersal constraints on post‐glacial expansion as well as climate. Consequently, we expect European tree species to show only limited tracking of near‐future climate changes.  相似文献   

18.
The range size distributions of 6643 species in ten different fish and invertebrate taxa dwelling in pelagic (latitudinal range sizes) and benthic (latitudinal and depth range sizes) habitats on both sides of the Atlantic Ocean (80°N−70°S) were studied. The objectives were to analyse: (1) the range size distribution patterns for the various taxa and whether they have right/left skewed or lognormal distributions; (2) the geographical species distributions, to ascertain whether the distribution ranges change with latitude (Rapoport's rule); and (3) the relationship between the depth ranges of benthic species and their maximum depth of occurrence and how depth range size distributions change with latitude. The pelagic taxa exhibited larger range sizes than did the benthic taxa, continental slope/rise species excepted. On the other hand, the boundaries between geographical provinces for both benthic taxa and pelagic taxa tended to occur in association with major oceanographic processes. The shape of the latitudinal range frequency distributions (LRFDs) of the pelagic organisms were distinctly left‐skewed, and the LRFDs for most taxa were significantly different from lognormal. There was no common pattern for the distributions of the benthic organisms, which were lognormal in Cephalopoda, Stomatopoda, and Crustacea Decapoda and tended to be left‐skewed and significantly different from lognormal in Pisces. The applicability of Rapoport's rule was not clearly inferable from the results, and the rule appears to be conditioned by the location of biogeographical boundaries and the endemism rate in the different biogeographical provinces. A clear increase in depth range size with maximum depth range was observable for benthic species, confirming previous studies. Species’ depth range distributions displayed a discernible latitudinal pattern, right‐skewed at high latitudes and left‐skewed at low latitudes. The location of biogeographical boundaries, and endemism rate by biogeographical province were considered to be the factors most useful in explaining species’ distribution patterns and their conformity or nonconformity to Rapoport's rule. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 437–455.  相似文献   

19.
Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa–area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z‐values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r2 > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r2 < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities.  相似文献   

20.
Aim To evaluate Rapoport's rule for New World birds in two‐dimensional geographical space. We specifically test for a topography × climate interaction that predicts little difference in range sizes between lowlands and mountains in cold climates, whereas in the tropics, montane species have narrow ranges and lowland species have broad ranges. Location The western hemisphere. Methods We used digitized range maps of breeding birds to generate mean range sizes in grids of 27.5 × 27.5 km and 110 × 110 km across North and South America. We examined the geographical pattern with respect to range in elevation, mean temperature in the coldest month, their interaction, biome size and continental width, using model II analysis of variance, multiple regression and simple correlation. Results In northern latitudes species have broad ranges in both mountainous and flat areas. However, range sizes in the mountains and lowlands diverge southwards, with the most extreme differences in the tropics. Further, there are minimal differences in range sizes across latitudes in lowlands. The smallest mean ranges occur in the tropical Andes. Mean range sizes in north‐central Canada, Central America and Argentina/Chile are also small, reflecting the narrowing of the continents in these areas. The best regression model explained 51% of the variation in mean range size. Main conclusions The two‐dimensional range size pattern indicates that neither winter temperature nor annual variability in temperature strongly influences the distribution of range sizes directly; rather, climate influences bird range sizes indirectly via effects on habitat size. Also, macroclimate interacts with topographic relief across latitudes, generating sharp mesoscale habitat gradients in tropical mountains but not in high latitude mountains or in lowlands at any latitude. Birds respond to these habitat gradients, resulting in ‘latitudinal’ range size gradients in topographically complex landscapes but not in simple landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号