首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
For trophic interactions to generate population cycles and complex spatio-temporal patterns, like travelling waves, the spatial dynamics must be matched across trophic levels. Here, we propose a spatial methodological approach for detecting such spatial match–mismatch and apply it to geometrid moths and their larval parasitoids in northern Norway, where outbreak cycles and travelling waves occur. We found clear evidence of spatial mismatch, suggesting that the spatially patterned moth cycles in this system are probably ruled by trophic interactions involving other agents than larval parasitoids.  相似文献   

2.
Geographical variation in population dynamics of a species offers an opportunity to understand the factors determining observed patterns of spatial dynamics. We evaluated the spatial variation in the population dynamics of the pine needle gall midge (PNGM), Thecodiplosis japonensis, which is a severe insect pest in pine forests in Korea, and studied the influences of weather factors that could affect its population dynamics. Results revealed that PNGM population dynamics were classified into five clusters based on the analysis of autocorrelation function and self-organizing map, which is an artificial neural network. We also quantified spatial synchrony in the population dynamics of PNGM using the nonparametric covariance function. Variation in spatial synchrony was strongly related to differences in maximum temperature and precipitation in Random Forest analysis, suggesting that the synchrony in PNGM population dynamics is largely the result of the Moran effect. In addition, spatial differences in population dynamics could be influenced by transient process of synchronization following invasion. Finally, the present results indicate that differences in population dynamics can be induced by interactions among several factors such as maximum temperature, precipitation, and invasion history of species.  相似文献   

3.
Ecological variables often fluctuate synchronously over wide geographical areas, a phenomenon known as spatial autocorrelation or spatial synchrony. Development of statistical approaches designed to test for spatial autocorrelation combined with the increasing accessibility of long-term, large-scale ecological datasets are now making it possible to document the patterns and understand the causes of spatial synchrony at scales that were previously intractable. These developments promise to foster significant future advances in understanding population regulation, metapopulation dynamics and other areas of population ecology.  相似文献   

4.
Spatially synchronous population dynamics have been documented in many taxa. The prevailing view is that the most plausible candidates to explain this pattern are extrinsic disturbances (the Moran effect) and dispersal. In most cases disentangling these factors is difficult. Theoretical studies have shown that dispersal between subpopulations is more likely to produce a negative relationship between population synchrony and distance between the patches than perturbations. As analyses of empirical data frequently show this negative relationship between the level of synchrony and distance between populations, this has emphasized the importance of dispersal as a synchronizing agent. However, several weather patterns show spatial autocorrelation, which could potentially produce patterns in population synchrony similar to those caused by dispersal. By using spatially extended versions of several population dynamic models, we show that this is indeed the case. Our results show that, especially when both factors (spatially autocorrelated perturbations and distance-dependent dispersal) act together, there may exist groups of local populations in synchrony together but fluctuating asynchronously with some other groups of local populations. We also show, by analysing 56 long-term population data sets, that patterns of population synchrony similar to those found in our simulations are found in natural populations as well. This finding highlights the subtlety in the interactions of dispersal and noise in organizing spatial patterns in population fluctuations.  相似文献   

5.
6.
1. Synchronous fluctuations of geographically separated populations are in general explained by the Moran effect, i.e. a common influence on the local population dynamics of environmental variables that are correlated in space. Empirical support for such a Moran effect has been difficult to provide, mainly due to problems separating out effects of local population dynamics, demographic stochasticity and dispersal that also influence the spatial scaling of population processes. Here we generalize the Moran effect by decomposing the spatial autocorrelation function for fluctuations in the size of great tit Parus major and blue tit Cyanistes caeruleus populations into components due to spatial correlations in the environmental noise, local differences in the strength of density regulation and the effects of demographic stochasticity. 2. Differences between localities in the strength of density dependence and nonlinearity in the density regulation had a small effect on population synchrony, whereas demographic stochasticity reduced the effects of the spatial correlation in environmental noise on the spatial correlations in population size by 21.7% and 23.3% in the great tit and blue tit, respectively. 3. Different environmental variables, such as beech mast and climate, induce a common environmental forcing on the dynamics of central European great and blue tit populations. This generates synchronous fluctuations in the size of populations located several hundred kilometres apart. 4. Although these environmental variables were autocorrelated over large areas, their contribution to the spatial synchrony in the population fluctuations differed, dependent on the spatial scaling of their effects on the local population dynamics. We also demonstrate that this effect can lead to the paradoxical result that a common environmental variable can induce spatial desynchronization of the population fluctuations. 5. This demonstrates that a proper understanding of the ecological consequences of environmental changes, especially those that occur simultaneously over large areas, will require information about the spatial scaling of their effects on local population dynamics.  相似文献   

7.
The vast majority of models for spatial dynamics of natural populations assume a homogeneous physical environment. However, in practice, dispersing organisms may encounter landscape features that significantly inhibit their movement. We use mathematical modelling to investigate the effect of such landscape features on cyclic predator-prey populations. We show that when appropriate boundary conditions are applied at the edge of the obstacle, a pattern of periodic travelling waves develops, moving out and away from the obstacle. Depending on the assumptions of the model, these waves can take the form of roughly circular 'target patterns' or spirals. This is, to our knowledge, a new mechanism for periodic-wave generation in ecological systems and our results suggest that it may apply quite generally not only to cyclic predator-prey interactions, but also to populations that oscillate for other reasons. In particular, we suggest that it may provide an explanation for the observed pattern of travelling waves in the densities of field voles (Microtus agrestis) in Kielder Forest (Scotland-England border) and of red grouse (Lagopus lagopus scoticus) on Kerloch Moor (northeast Scotland), which in both cases move orthogonally to any large-scale obstacles to movement. Moreover, given that such obstacles to movement are the rule rather than the exception in real-world environments, our results suggest that complex spatio-temporal patterns such as periodic travelling waves are likely to be much more common in the natural world than has previously been assumed.  相似文献   

8.
The world is spatially autocorrelated. Both abiotic and biotic properties are more similar among neighboring than distant locations, and their temporal co-fluctuations also decrease with distance. P. A. P. Moran realized the ecological importance of such ‘spatial synchrony’ when he predicted that isolated populations subject to identical log-linear density-dependent processes should have the same correlation in fluctuations of abundance as the correlation in environmental noise. The contribution from correlated weather to synchrony of populations has later been coined the ‘Moran effect’. Here, we investigate the potential role of the Moran effect in large-scale ecological outcomes of global warming. Although difficult to disentangle from dispersal and species interaction effects, there is compelling evidence from across taxa and ecosystems that spatial environmental synchrony causes population synchrony. Given this, and the accelerating number of studies reporting climate change effects on local population dynamics, surprisingly little attention has been paid to the implications of global warming for spatial population synchrony. However, a handful of studies of insects, birds, plants, mammals and marine plankton indicate decadal-scale changes in population synchrony due to trends in environmental synchrony. We combine a literature review with modeling to outline potential pathways for how global warming, through changes in the mean, variability and spatial autocorrelation of weather, can impact population synchrony over time. This is particularly likely under a ‘generalized Moran effect’, i.e. when relaxing Moran's strict assumption of identical log-linear density-dependence, which is highly unrealistic in the wild. Furthermore, climate change can influence spatial population synchrony indirectly, through its effects on dispersal and species interactions. Because changes in population synchrony may cascade through food-webs, we argue that the (generalized) Moran effect is key to understanding and predicting impacts of global warming on large-scale ecological dynamics, with implications for extinctions, conservation and management.  相似文献   

9.
Spatial synchrony of oscillating populations has been observed in many ecological systems, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noises, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we develop a spatially structured population model, which is described by coupled-map lattices and incorporates both dispersal and colored environmental noise. A method for generating time series with desired spatial correlation and color is introduced. Then, we use these generated time series to analyze the influence of noise color on synchrony in population dynamics. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first-order) autocorrelation for autoregressive noise. Patterns of spatial synchrony are considered for stable, periodic and chaotic population dynamics. Numerical simulations verify that environmental noise color has a major influence on the level of synchrony, which depends strongly on how noise is introduced into the model. Furthermore, the influence of noise color also depends on patterns of dispersal between local populations. In addition, the desynchronizing effect of reddened noise is always weaker than that of white noise. From our results, we notice that the role of reddened environmental noise on spatial synchrony should be treated carefully and cautiously, especially for the spatially structured populations linked by dispersal.  相似文献   

10.
Self-organization and pattern formation represent the emergence of order in temporal and spatial processes. Self-organization in population ecology is gaining attention due to the recent advances concerning temporal fluctuations in the population size of dispersal-linked subunits. We shall report that spatially structured models of population renewal promote the emergence of a complex power law order in spatial population dynamics. We analyse a variety of population models showing that self-organization can be identified as a temporal match in population dynamics among local units, and how the synchrony changes in time. Our theoretical results are concordant with analyses of population data on the Canada lynx.  相似文献   

11.
刘志广  张丰盘 《生态学报》2016,36(2):360-368
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。  相似文献   

12.
Spatial synchrony is common, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noise, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we developed a spatially structured population model, which is described by coupled-map lattices. Our recent investigation showed that trophic correlation of environmental noise was another important factor that affects spatial synchrony. As a supplement, we considered the influence of the color of the environmental noise on the spatial synchrony in this study. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first-order) autocorrelation for autoregressive noise. Patterns of spatial synchrony were considered for stable, periodic (quasi-periodic), and chaotic population dynamics. Numerical simulations verified that the color of the environmental noise is another mechanism that causes spatial synchrony. Generally, the effect of the color of the noise on the synchrony is dependent on the type of dynamics (stable, cyclic, chaotic) present in the population. For cyclic dynamics, simulation results clearly demonstrate that reddened noise has higher synchrony than white noise. The importance of our research is that it enriches the theory of potential causes of spatial synchrony.  相似文献   

13.
Red grouse Lagopus lagopus scoticus populations exhibit unstable dynamics that are often characterised by regular periodic fluctuations in abundance. Time-series' of grouse harvesting records collected from 287 management units (moors) across Scotland, England and Wales were analysed to investigate the broad scale patterns of synchrony in these fluctuations. Estimation of the spatial autocorrelation of grouse population dynamics across moors indicates relatively high levels of synchrony between populations on adjacent moors, but that this synchrony declines sharply with increasing inter-moor distance. At distances of greater than 100  km, grouse population time-series exhibit only weakly positive cross-correlation coefficients. Twenty-eight geographical, environmental and other candidate variables were examined to construct a general linear model to explain variation in local synchrony. Grouse moor productivity (average size of shooting bag), distance from the Atlantic coast moving in a north-easterly direction, April and June temperatures, and June rainfall significantly increased the explanatory power of this model. An understanding of the processes underlying synchrony in red grouse population dynamics is a prerequisite to anticipating the effects of large-scale environmental change on regional patterns of grouse distribution and abundance.  相似文献   

14.
The Moran effect for populations separated in space states that the autocorrelations in the population fluctuations equal the autocorrelation in environmental noise, assuming the same linear density regulation in all populations. Here we generalize the Moran effect to include also nonlinear density regulation with spatial heterogeneity in local population dynamics as well as in the effects of environmental covariates by deriving a simple expression for the correlation between the sizes of two populations, using diffusion approximation to the theta-logistic model. In general, spatial variation in parameters describing the dynamics reduces population synchrony. We also show that the contribution of a covariate to spatial synchrony depends strongly on spatial heterogeneity in the covariate or in its effect on local dynamics. These analyses show exactly how spatial environmental covariation can synchronize fluctuations of spatially segregated populations with no interchange of individuals even if the dynamics are nonlinear.  相似文献   

15.
Although climatic forcing has been suspected to be the most common cause of spatial population synchrony owing to the Moran effect, it has proved difficult to disentangle the impact of climate from other possible causes of synchrony based on population survey data. Nonlinear population responses to climatic variation may be a part of this difficulty, but they can also provide an opportunity to highlight the climate impacts through targeted survey designs. In particular, when species distribution ranges encompass consistent spatial gradients in climate (e.g. according to latitude or altitude), such gradients can be strategically included in the spatial design of population surveys as to facilitate comparisons of spatial synchrony patterns across and along the gradient. In that case, we predict that nonlinear impacts of climatic variation on population growth rates will result in anisotropic (direction specific) synchrony patterns in the sense that synchrony will drop faster with distance along the climatic gradient than across it. We provide an empirical case study to exemplify survey design and analyses. Of two sympatric species of geometrids, inhabiting an altitudinal gradient in subarctic birch forest, one (Operophtera brumata L.) showed anisotropic synchrony consistent with a strongly nonlinear sensitivity to climatic variation, whereas the other (Epirrita autumnata Bkh.) did not. These results are interpreted in light of the biological characteristics of the species.  相似文献   

16.
Spatial synchrony is widespread in natural populations but the mechanisms that underpin it are not yet fully understood. Two key biotic drivers of spatial synchrony have been identified: dispersal and trophic interactions (e.g. natural enemies). We used spatially structured, patchy bacterial populations to show that although increased dispersal always enhanced spatial synchrony of fluctuations in bacterial abundance, this effect was far stronger in the presence of a bacteriophage parasite. Bacteriophages drove strong within patch fluctuations in bacterial abundance that became phase locked through dispersal. Furthermore, the way in which stability, measured as constancy, responded to increasing dispersal was qualitatively different depending on whether parasites were present or not. Patch-level constancy decreased with dispersal in the presence of parasites, whereas dispersal increased patch-level constancy in the absence of parasites. Population-level constancy also decreased with dispersal in the presence of parasites, but was unaffected by dispersal in the absence of parasites. These contrasting patterns were likely due to the different role played by dispersal in the presence and absence of parasites, synchronizing dynamics in the former case and averaging stochastic fluctuations in the latter. Taken together, our findings suggest that dispersal and natural enemies can interact to drive spatially synchronous population fluctuations that decrease stability at both the patch and population level.  相似文献   

17.
Intraspecific density regulation influences the synchronization of local population dynamics through dispersal. Spatial synchrony in turn may jeopardize metapopulation persistence. Joining results from previous studies suggests that spatial synchrony is highest at moderate over-compensation and is low at compensating and at very strong over-compensating density regulation. We scrutinize this supposition of a unimodal relationship using a process-based metapopulation model with explicit local population dynamics. We extend the usually studied range of density regulation to under-compensation and analyse resulting metapopulation persistence. We find peaks of spatial synchrony not only at over-compensatory but also under-compensatory density regulation and show that effects of local density compensation on synchrony follow a bimodal rather than unimodal relationship. Persistence of metapopulations however, shows a unimodal relationship with a broad plateau of high persistence from compensatory to over-compensatory density regulation. This range of high persistence comprises both levels of low and high spatial synchrony. Thus, not synchrony alone jeopardizes metapopulation persistence, but only in interplay with high local extinction risk. The functional forms of the relations of density compensation with spatial synchrony and persistence are robust to increases in dispersal mortality, landscape dynamics, or density dependence of dispersal. However, with each of these increases the maxima of spatial synchrony and persistence shift to higher over-compensation and levels of synchrony are reduced. Overall, for over-compensation high landscape connectivity has negative effects while for under-compensation connectivity affects persistence positively. This emphasizes the importance of species life-history traits for management decisions with regard to landscape connectivity: while dispersal corridors are essential for species with under-compensatory density regulation, they may have detrimental effects for endangered species with over-compensation.  相似文献   

18.
Theoretical analyses of single‐species models have revealed that the degree of synchrony in fluctuations of geographically separated populations increases with increasing spatial covariation in environmental fluctuations and increased interchange of individuals, but decreases with local strength of density dependence. Here we extend these results to include interspecific competition between two species as well as harvesting. We show that the effects of interspecific competition on the geographical scale of population synchrony are dependent on the pattern of spatial covariation of environmental variables. If the environmental noise is uncorrelated between the competing species, competition generally increases the spatial scale of population synchrony of both species. Otherwise, if the environmental noises are strongly correlated between species, competition generally increases the spatial scale of population synchrony of at least one, but also often of both species. The magnitude of these spatial scaling effects is, however, strongly influenced by the dispersal capacity of the two competing species. If the species are subject to proportional harvesting, this may synchronise population dynamics over large geographical areas, affecting the vulnerability of harvested species to environmental changes. However, the strength of interspecific competition may strongly modify this effect of harvesting on the spatial scale of population synchrony. For example, harvesting of one species may affect the spatial distribution of competing species that are not subject to harvesting. These analytical results provide an important illustration of the importance of applying an ecosystem rather than a single‐species perspective when developing harvest strategies for a sustainable management of exploited species.  相似文献   

19.
Theoretical studies suggest that temporal covariation among and temporal autocorrelation within demographic rates are important features of population dynamics. Yet, empirical studies have rarely focused on temporal covariation and autocorrelation limiting our understanding of these patterns in natural populations. This lack of knowledge restrains our ability to fully understand population dynamics and to make reliable population forecasts. In order to fill this gap, we used a long‐term monitoring (15 years) of a kestrel Falco tinnunculus population to investigate covariation and autocorrelation in survival and reproduction at the population level and their impact on population dynamics. Using Bayesian joint analyses, we found support for positive covariation between survival and reproduction, but weak autocorrelation through time. This positive covariation was stronger in juveniles compared with adults. As expected for a specialized predator, we found that the reproductive performance was strongly related to an index of vole abundance explaining 86% of the temporal variation. This very strong relationship suggests that the temporally variable prey abundance may drive the positive covariation between survival and reproduction in this kestrel population. Simulations suggested that the observed effect size of covariation could be strong enough to affect population dynamics. More generally, positive covariation and autocorrelation have a destabilizing effect increasing substantially the temporal variability of population size.  相似文献   

20.
Habitat fragmentation and climate change are both prominent manifestations of global change, but there is little knowledge on the specific mechanisms of how climate change may modify the effects of habitat fragmentation, for example, by altering dynamics of spatially structured populations. The long‐term viability of metapopulations is dependent on independent dynamics of local populations, because it mitigates fluctuations in the size of the metapopulation as a whole. Metapopulation viability will be compromised if climate change increases spatial synchrony in weather conditions associated with population growth rates. We studied a recently reported increase in metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the Finnish archipelago, to see if it could be explained by an increase in synchrony of weather conditions. For this, we used 23 years of butterfly survey data together with monthly weather records for the same period. We first examined the associations between population growth rates within different regions of the metapopulation and weather conditions during different life‐history stages of the butterfly. We then examined the association between the trends in the synchrony of the weather conditions and the synchrony of the butterfly metapopulation dynamics. We found that precipitation from spring to late summer are associated with the M. cinxia per capita growth rate, with early summer conditions being most important. We further found that the increase in metapopulation synchrony is paralleled by an increase in the synchrony of weather conditions. Alternative explanations for spatial synchrony, such as increased dispersal or trophic interactions with a specialist parasitoid, did not show paralleled trends and are not supported. The climate driven increase in M. cinxia metapopulation synchrony suggests that climate change can increase extinction risk of spatially structured populations living in fragmented landscapes by altering their dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号