首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the synergistic effects of Japanese green tea extract (JGTE) and levofloxacin (LVFX) against enterohemorrhagic Escherichia coli (EHEC) infection in a gnotobiotic mouse model. Mice fed on JGTE conferred a significant degree of protection against an oral challenge with EHEC. Complete elimination of the bacteria from the mice, was however, difficult. The combination of JGTE and LVFX increased the survival rate and reduced damage to target organs. Thus, dietary supplementation with JGTE improved the therapeutic effects of antibiotic treatment. Received: 28 July 2000 / Accepted: 19 September 2000  相似文献   

2.
Enterohaemorrhagic Escherichia coli (EHEC) colonizes the intestine and causes bloody diarrhoea and kidney failure by producing Shiga toxin. Upon binding intestinal cells, EHEC triggers a change in host cell shape, generating actin ‘pedestals’ beneath bound bacteria. To investigate the importance of pedestal formation to disease, we infected genetically engineered mice incapable of supporting pedestal formation by an EHEC‐like mouse pathogen, or wild type mice with a mutant of that pathogen incapable of generating pedestals. We found that pedestal formation promotes attachment of bacteria to the intestinal mucosa and vastly increases the severity of Shiga toxin‐mediated disease.  相似文献   

3.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is associated with hemorrhagic colitis, thrombotic thrombocytopenic purpura, and hemolytic-uremic syndrome in humans. B-cell epitopes of intimin γ from EHEC O157:H7 were predicted and synthesized for evaluating their immunogenicity and protective effect and for screening a novel synthetic peptide vaccine. In the present study, five B-cell epitopes of IntC300 were predicted by Hopp-Woods, Chou-Fasman, Karplus-Schulz, Emini, Jameson-Wolf and Kolaskar-Tongaonakar analysis. One of them, KT-12 (KASITEIKADKT) was coupled with keyhole limpet hemocyanin, and used to immunize BALB/c mice three times by subcutaneous and intranasal injection. Mouse serum titers of IgG and IgA were assessed by indirect ELISA. Oral inoculation of EHEC O157:H7 resulted in infection and death of the mice. It was found that B-cell epitopes are located within or near the peptide segments 658-669, 711-723, 824-833, 897-914, 919-931. Both subcutaneous and intranasal immunization induced higher concentrations of IgG antibodies, as detected by indirect ELISA, and nasal-mucosal immunization induced the production of high concentrations of IgA antibodies. After infection with a lethal dose of EHEC O157:H7, the survival rate of mice that had received subcutaneous immunization was not significantly different from that of the control group (P > 0.05). On the other hand, mice that received intranasal immunization showed a better survival rate than the group that received subcutaneous immunization (P < 0.05). The synthesized antigenic peptide KT-12 induced mice to produce higher concentrations of IgG and IgA after immunization, but only intranasal immunization of KT-12 succeeded in protecting most mice from infection with EHEC O157:H7. This study suggests that the synthesized antigenic peptide KT-12 is be a potential vaccine candidate against EHEC O157:H7.  相似文献   

4.
Enterohemorrhagic Escherichia coli (EHEC) is an important food-borne pathogen, which causes a wide spectrum of diseases ranging from hemorrhagic colitis to life-threatening hemolytic uremic syndrome (HUS). Currently, insufficient measures to prevent and treat EHEC infection make a vaccine against EHEC in great demand. EspA (E. coli secreted protein A), intimin, and Stx2 (Shiga toxin 2) are three predominant virulence factors of EHEC, and each of them has proved to be capable of inducing partial protective immunity. In this study, we constructed a trivalent recombinant protein designated EIS that is composed of EspA (E), C-terminal 300 amino acids of intimin (I) and B subunit of Stx2 (S), and tested it as vaccine using a mouse model. Our results showed that immunization of EIS induced strong humoral response to EspA, intimin and Stx2 and protected mice against the challenges with live EHEC or EHEC sonicated lysate. Moreover, it enhanced clearance of intestinally colonized bacteria. This work suggests that for EHEC vaccines using a combination of EspA, intimin and Stx2 antigens appears to be more effective than using any of these immunogens alone.  相似文献   

5.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infections cause serious public health problems worldwide. The translocation intimin receptor (Tir) is responsible for adhesion and attaching and effacing lesions. In the current study, we used a mitomycin-treated mouse model to evaluate the efficacy of subcutaneous vs intranasal administration of the recombinant Tir as vaccine. Following immunization, mice were infected with E. coli O157:H7 and faces were monitored for shedding. Mice immunized intrasally with purified Tir proteins produced higher IgG and IgA titers in serum and feces, resulting in significant reductions in fecal shedding of EHEC O157 and higher a survival rate (92.9%), compared with subcutaneous or control immunizations. These results demonstrate the potential for the use of Tir proteins in mucosal vaccine formulations to prevent colonization and shedding of E. coli O157:H7. Therefore, purified Tir protects mice against EHEC challenge after intranasal immunization and is worth further clinical development as a vaccine candidate.  相似文献   

6.
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin‐producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin‐deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.  相似文献   

7.
Aims: To investigate the prevalence of traditional and emerging types of enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) strains in stool samples from children with diarrhoea and to characterize their virulence genes involved in the attaching and effacing (A/E) phenotype. Methods and Results: Serological and PCR‐based methods were used for detection and isolation of EPEC and EHEC strains from 861 stool samples from diarrhoeic children. Agglutination with traditional EPEC and EHEC O‐group‐specific antisera resulted in detection of 38 strains; 26 of these carried virulence factors of EPEC or EHEC. PCR screening for the eae gene resulted in isolation of 97 strains, five carried genes encoding Shiga toxins (stx), one carried the bfpA gene and 91 were atypical EPEC. The 97 EPEC and EHEC strains were divided into 36 O‐serogroups and 21 H‐types, only nine strains belonged to the traditional EPEC O‐groups O26, O55, O86 and O128. In contrast, EPEC serotypes O28:H28, O51:H49, O115:H38 and O127:H40 were found in multiple cases. Subtyping the virulence factors intimin, Tir and Tir‐cytoskeleton coupling effector protein (TccP)/TccP2 resulted in further classification of 93·8% of the 97 strains. Conclusions: Our findings show a clear advantage of the eae‐PCR over the serological detection method for identification of EPEC and EHEC strains from human patients. Significance and Impact of the Study: Molecular detection by the eae‐PCR followed by serotyping and virutyping is useful for monitoring trends in EPEC and EHEC infections and to discover their possible reservoirs.  相似文献   

8.
Lactic acid bacteria (LAB) exert antagonistic activities against diverse microorganisms, including pathogens. In this work, we aimed to investigate the ability of LAB strains isolated from food to produce biofilms and to inhibit growth and surface colonization of Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 at 10°C. The ability of 100 isolated LAB to inhibit EHEC O157:H7 NCTC12900 growth was evaluated in agar diffusion assays. Thirty-seven LAB strains showed strong growth inhibitory effect on EHEC. The highest inhibitory activities corresponded to LAB strains belonging to Lactiplantibacillus plantarum, Pediococcus acidilactici and Pediococcus pentosaceus species. Eighteen out of the 37 strains that showed growth inhibitory effects on EHEC also had the ability to form biofilms on polystyrene surfaces at 10°C and 30°C. Pre-established biofilms on polystyrene of four of these LAB strains were able to reduce significantly surface colonization by EHEC at low temperature (10°C). Among these four strains, Lact. plantarum CRL 1075 not only inhibited EHEC but also was able to grow in the presence of the enteric pathogen. Therefore, this strain proved to be a good candidate for further technological studies oriented to its application in food-processing environments to mitigate undesirable surface contaminations of E. coli.  相似文献   

9.
Mammalian cells express an array of toll‐like receptors to detect and respond to microbial pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC). These clinically important attaching and effacing (A/E) pathogens infect the apical surface of intestinal epithelial cells, causing inflammation as well as severe diarrheal disease. Because EPEC and EHEC are human‐specific, the related murine pathogen Citrobacter rodentium has been widely used to define how hosts defend against A/E pathogens. This study explored the role of TLR9, a receptor that recognises unmethylated CpG dinucleotides present in bacterial DNA, in promoting host defence against C. rodentium. Infected Tlr9?/? mice suffered exaggerated intestinal damage and carried significantly higher (10–100 fold) pathogen burdens in their intestinal tissues as compared with wild type (WT) mice. C. rodentium infection also induced increased antimicrobial responses, as well as hyperactivation of NF‐κB signalling in the intestines of Tlr9?/? mice. These changes were associated with accelerated depletion of the intestinal microbiota in Tlr9?/? mice as compared with WT mice. Notably, antibiotic‐based depletion of the gut microbiota in WT mice prior to infection increased their susceptibility to the levels seen in Tlr9?/? mice. Our results therefore indicate that TLR9 signalling suppresses intestinal antimicrobial responses, thereby promoting microbiota‐mediated colonisation resistance against C. rodentium infection.  相似文献   

10.
Enterohaemorrhagic Escherichia coli (EHEC) causes life‐threatening infections in humans as a consequence of the production of Shiga‐like toxins. Lack of a good animal model system currently hinders in vivo study of EHEC virulence by systematic genetic methods. Here we applied the genetically tractable animal, Caenorhabditis elegans, as a surrogate host to study the virulence of EHEC as well as the host immunity to this human pathogen. Our results show that E. coli O157:H7, a serotype of EHEC, infects and kills C. elegans. Bacterial colonization and induction of the characteristic attaching and effacing (A/E) lesions in the intact intestinal epithelium of C. elegans by E. coli O157:H7 were concomitantly demonstrated in vivo. Genetic analysis indicated that the Shiga‐like toxin 1 (Stx1) of E. coli O157:H7 is a virulence factor in C. elegans and is required for full toxicity. Moreover, the C. elegans p38 mitogen‐activated protein kinase (MAPK) pathway, anevolutionarily conserved innate immune and stress response signalling pathway, is activated in the regulation of host susceptibility to EHEC infection in a Stx1‐dependent manner. Our results validate the EHEC–C. elegans interaction as suitable for future comprehensive genetic screens for both novel bacterial and host factors involved in the pathogenesis of EHEC infection.  相似文献   

11.
12.
Enteric bacterial pathogens commonly use a type III secretion system (T3SS) to successfully infect intestinal epithelial cells and survive and proliferate in the host. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC; EHEC) colonize the human intestinal mucosa, form characteristic histological lesions on the infected epithelium and require the T3SS for full virulence. T3SS effectors injected into host cells subvert cellular pathways to execute a variety of functions within infected host cells. The EPEC and EHEC effectors that subvert innate immune pathways – specifically those involved in phagocytosis, host cell survival, apoptotic cell death and inflammatory signalling – are all required to cause disease. These processes are reviewed within, with a focus on recent work that has provided insights into the functions and host cell targets of these effectors.  相似文献   

13.
Aims: This study evaluated a typing method of O26:H11 enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) based on the variation in genomic location and copy numbers of IS621. Methods and Results: Two multiplex PCRs, targeting either the left (5′) or right (3′) IS/chromosome junction of 12 IS621 insertion sites and one PCR specific of another truncated copy, were developed. Thirty‐eight amplification profiles were observed amongst a collection of 69 human and bovine O26:H11 EHEC and EPEC. Seventy‐one per cent of the 45 EHEC and EPEC with identical IS621 fingerprints within groups of two, three or four isolates had >85% pulsed field gel electrophoresis (PFGE) profile similarity, including four groups of epidemiologically related EHEC or EPEC, while most of the groups had <85% similarity between each others. Epidemiologically related EHEC from each of three independent outbreaks in Japan and Belgium also exhibited identical IS621 fingerprints and PFGE profiles. Conclusions: The IS621 fingerprinting and the PFGE are complementary typing assays of EHEC and EPEC; though, the former is less discriminatory. Significance and Impact of the Study: The IS621 printing method represents a rapid (24 h) first‐line surveillance and typing assay, to compare and trace back O26:H11 EHEC and EPEC during surveys in farms, multiple human cases and outbreaks.  相似文献   

14.
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are gastrointestinal pathogens responsible for severe diarrheal illness. EHEC and EPEC form “attaching and effacing” lesions during colonization and, upon adherence, inject proteins directly into host intestinal cells via the type III secretion system (T3SS). Injected bacterial proteins have a variety of functions but generally alter host cell biology to favor survival and/or replication of the pathogen. Non-LEE-encoded effector A (NleA) is a T3SS-injected effector of EHEC, EPEC, and the related mouse pathogen Citrobacter rodentium. Studies in mouse models indicate that NleA has an important role in bacterial virulence. However, the mechanism by which NleA contributes to disease remains unknown. We have determined that the following translocation into host cells, a serine and threonine-rich region of NleA is modified by host-mediated mucin-type O-linked glycosylation. Surprisingly, this region was not present in several clinical EHEC isolates. When expressed in C. rodentium, a non-modifiable variant of NleA was indistinguishable from wildtype NleA in an acute mortality model but conferred a modest increase in persistence over the course of infection in mixed infections in C57BL/6J mice. This is the first known example of a bacterial effector being modified by host-mediated O-linked glycosylation. Our data also suggests that this modification may confer a selective disadvantage to the bacteria during in vivo infection.  相似文献   

15.
Forty-six of 52 (88.5%) enterohemorrhagic Escherichia coli (EHEC) strains screened carried a “common” plasmid of about 90 kb which encoded sequences homologous to the Inc F-IIA replicon. A similarly high incidence of Inc F-IIA plasmid-containing strains was observed in other groups of diarrheagenic E. coli, but not in random environmental coliform isolates. Enteropathogenic E. coli (EPEC) contain plasmids of similar properties and share a 23-kb DNA fragment with plasmids from EHEC. The common region encodes the F-IIA replication region and sequences homologous to the transfer operon of the Inc F-II plasmid R1. Sequence homology varied between plasmids isolated from different EHEC/EPEC strains with >80% showing homology to the regions encoding the rep and par genes. Only 5% of plasmids from EHEC strains had intact sequences homologous to the DNA between these two regions, including the oriT site. Some plasmids with an apparently intact tra operon still failed to plaque F-pilus-specific phages. This is consistent with observations that the large plasmids of EHEC and EPEC are phenotypically nonconjugative. These results suggest that the large plasmids of EHEC/EPEC constitute a family of transfer-deficient Inc F-IIA plasmids with varying degrees of deletion in tra function. The evolutionary ramifications of this finding are considered.  相似文献   

16.
Aims: The Shiga‐like toxins (Stx) are critical virulence factors of enterohaemorrhagic Escherichia coli (EHEC). Stx1B subunit plays important roles in EHEC infection. This work aims to generate and characterize monoclonal antibodies (mAbs) against the Stx1B and to investigate their utility in discrimination ELISA. Methods and Results: Two newly identified mAbs (designated 2H8 and 1B10, respectively) against the Stx1B protein were prepared via hybridoma techniques. The immunoreactivity of both mAbs to the Stx1B protein was confirmed in ELISA and Western blot. Moreover, they differentiate EHEC from Salmonella enteritis, non‐Stx1‐producing E. coli, Mycobacterium tuberculosis, Listeria monocytogenes, Streptococcus agalactiae and Staphylococcus aureus. Conclusions: The anti‐STx1B mAbs are valuable diagnostic reagents for distinguishing EHEC from other bacteria. Significance and Impact of the Study: This is the first report regarding the usage of anti‐STx1B mAbs in discrimination ELISA. The established ELISA may have potential in clinical surveillance of EHEC infection.  相似文献   

17.
The preventive effects of glycomacropeptide (GMP) against intestinal infection were investigated, and conjugates of GMP with xylooligosaccharide (XOS) and carboxymethyldextran (CMD) were prepared by the Maillard reaction to enhance the effect of GMP. The binding ability of GMP to intestinal pathogenic bacteria was evaluated by a binding assay with biotinylated bacteria. GMP showed the ability to bind to Salmonella enteritidis and enterohemorrhagic Escherichia coli O157:H7 (EHEC O157). This binding ability was decreased by a sialidase treatment and completely eliminated by periodate oxidation. These results indicate that such carbohydrate moieties as sialic acid in GMP are involved in binding to S. enteritidis and EHEC O157. The preventive effect of GMP on the adhesion of pathogenic bacteria to Caco-2 cells was also investigated. GMP showed an inhibitory effect on the adhesion of EHEC O157 in a dose-dependent manner, although it was not a potent inhibitor of the adhesion of Salmonella infection. However, in the case of Salmonella infection, GMP–XOS and GMP–CMD significantly suppressed IL-8 production which was the index of infection. Our results indicate GMP to be a promising agent for preventing intestinal infection.  相似文献   

18.
We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs) is effective for protecting against hemolytic uremic syndrome (HUS) caused by enterohemorrhagic E. coli (EHEC) O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA)-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB). Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs) at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN)/Creatinin (Cr) were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB) subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.  相似文献   

19.
The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food‐borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non‐pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.  相似文献   

20.
Aims: To isolate, characterize and select phages as potential biocontrol agents of enterohemorrhagic and Shiga toxin‐producing Escherichia coli (EHEC and STEC) in cattle. Methods and Results: Sixteen STEC and EHEC coliphages were isolated from bovine minced meat and stool samples and characterized with respect to their host range against STEC, EHEC and other Gram‐negative pathogens; their morphology by electron microscopy; the presence of the stx1, stx2 and cI genes by means of PCR; RAPD and rep‐PCR profiles; plaque formation; and acid resistance. Six isolates belonged to the Myoviridae and 10 to the Podoviridae families. The phages negative for stx and cI that formed large, well‐defined plaques were all isolated using EHEC O157:H7 as host. Among them, only CA911 was a myophage and, together with CA933P, had the broadest host range for STEC and EHEC; the latter phage also infected Shigella and Pseudomonas. Isolates CA911, MFA933P and MFA45D differed in particle morphology and amplification patterns by RAPD and rep‐PCR and showed the highest acidity tolerance. Conclusions: Myophage CA911 and podophages CA933P, MFA933P and MFA45D were chosen as the best candidates for biocontrol of STEC and EHEC in cattle. Significance and Impact of the Study: This work employs steps for a rational selection and characterization of bacteriophages as therapeutic agents. This report constitutes the first documentation of STEC and EHEC phages isolated in Argentina and proposes for the first time the use of rep‐PCR as a complement of RAPD on DNA fingerprinting of phages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号