首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids or the glucocorticoid analog dexamethasone (DEX) enhances the differentiation of preadipocytes in the presence of insulin and influences preadipocyte proliferation. The purpose of the present study was to determine if DEX can induce the recruitment of preadipocytes. Using monoclonal antibodies for complement-mediated cytotoxicity, preadipocytes were removed from porcine stromal vascular (S-V) cell cultures. Our experiments demonstrated for the first time that after removal of preadipocytes by cytotoxicity, preadipocytes or fat cells could be induced by DEX or DEX plus insulin but not by insulin alone. However, many more fat cells were induced (258 ± 15/unit area) when DEX was added with fetal bovine serum (FBS) followed with insulin treatment, compared to DEX with insulin (21.3 ± 5.1/ unit area) after removal of preadipocytes. Immunocyto-chemistry with AD-3, a preadipocyte marker, showed that DEX with FBS for 3 days after seeding (i.e., the proliferation phase) produced many more preadipocytes (AD-3 positive, 223 ± 45/unit area) than FBS alone (10.5 ± 1.4/unit area). Bromodeoxyuridine (BrdU) incorporation assays demonstrated that the efficiency of DEX with FBS (i.e., during proliferation) was mitosis dependent. Accordingly, we conclude that: porcine S-V cultures contain preadipocytes at different stages of differentiation and that DEX induced early preadipocyte differentiation depends on mitosis.  相似文献   

2.
KRAS, KRYSTYNA M., DOROTHY B. HAUSMAN, GARY J. HAUSMAN, AND ROY J. MARTIN. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes Res. Objectives: The ability to acquire fat cells persists over the life spans of animals. It is unknown whether adipocyte acquisition is the result of preadipocyte proliferation or stem cell recruitment to become adipocytes. The purposes of these studies were 1) to characterize early differentiation of stromal vascular (S-V) cells to preadipocytes as it is influenced by insulin, dexamethasone (DEX), and insulin-like growth factor-I (IGF-I); and 2) to determine whether new fat cells arise from stem cell recruitment or preadipocyte proliferation. Research Methods and Procedures: Freshly isolated S-V cells from rat inguinal adipose tissues were plated for 24 hours then exposed to serum-free medium. Results: Approximately 15% of freshly plated S-V cells were preadipocytes as determined by a preadipocyte specific marker, AD3. Total cell number and proportion of preadipocytes were significantly greater with 100 nM insulin treatment than with 0, 0. 1, or 1. 0 nM, but IGF-I treatment at 10 nM resulted in preadipocyte development similar to that with 100 nM insulin treatment. The addition of 5 nM DEX to the 100 nM insulin treatment resulted in a 20% increase in preadipocyte number by day 2 when compared to either treatment alone. 5-Bromo-2′-deoxyuridine treatment suppressed the increased proportion of preadipocytes from days 0–2 in non-insulin treated cells and prevented the increase typically observed with insulin. A mitosis inhibitor also significantly reduced the proportion of preadipocytes. Discussion: These results show for the first time that S-V cells are recruited as preadipocytes and that proliferation of these preadipocytes and early differentiation occur simultaneously.  相似文献   

3.
The hormonal regulation of leptin mRNA expression and the association between leptin expression and adipocyte differentiation were examined in primary cultures of porcine S-V cells with Northern blot and immunocytochemical analysis. Seeding for 3 days with fetal bovine serum (FBS) with varying levels of dexamethasone (Dex) increased levels of leptin mRNA in a dosedependent manner in parallel with increases in the proportion of preadipocytes (AD-3 positive cells; AD-3, a preadipocyte marker). Six-day treatment with 10 or 850 nM insulin after FBS+Dex treatment resulted in a similar increase in leptin mRNA expression and morphological differentiation. However, significantly lower levels of leptin mRNA and smaller fat cells were observed in cultures treated with 1 nM insulin or 10 nM insulin-like growth factor-I (IGF-I). Dex-induced increases in leptin mRNA levels and AD-3 cell numbers were blocked completely by the addition of transforming growth factor-β (TGF-β) to FBS+Dex-treated cultures. However TGF-β significantly increased fat cell size and leptin mRNA expression when added to ITS (insulin, 850 nM; transferrin, 5 μg/ml; and selenium, 5 ug/mL) treated cultures during the lipid-filling stage. When added with FBS+DEX for the first 3 days, growth hormone (GH) did not influence the Dex-induced increase in AD-3 cells and leptin mRNA expression, but GH reduced leptin mRNA levels when added with insulin for 6 days after FBS+Dex. These results demonstrated that regulation of leptin mRNA expression by Dex, insulin, IGF-I, TGF-β, and GH may be associated with changes in preadipocyte number and fat cell size.  相似文献   

4.
The expression of three CCAAT/enhancer-binding proteins (C/EBPs) was examined with immunocytochemistry and Western blot analysis during preadipocyte differentiation in porcine stromal vascular (S-V) cell cultures. Regardless of treatment and time in culture, immunoreactivity for all three C/EBP isoforms was restricted to cell nuclei. At day 1, 50 ± 6% of S-V cells were C/EBPδ positive, whereas 13 ± 3 and 11.7 ± 3% of S-V cells were AD-3 and C/EBPα positive, respectively. After 3 days of seeding in fetal bovine serum (FBS) and dexamethasone (DEX), C/EBPδ; AD-3, and C/EBPα-positive cells increased to 67 ± 5, 42 ± 4, and 32 ± 3%, respectively. Double staining clearly showed that most of the C/EBPα reactive cells had not accumulated appreciable lipid after 3 days of FBS + DEX. Following 3 days of insulin treatment, the percentage of C/EBPδ cells was 50 ± 6, whereas the percentage of AD-3- and C/EBPα-positive cells was 41 ± 4 and 31 ± 3, respectively. After insulin treatment all fat cells were AD-3, C/EBPα, and C/EBPδ positive. Double staining demonstrated that fat cells were C/EBPδ reactive throughout the culture period. Western blotting showed changes in C/EBP isoform expression that were consistent with the immunocytochemical results. We conclude that C/EBPα is a terminal differentiation marker which is expressed later than AD-3 but further studies are needed to determine the relationship between C/EBPδ and adipogenesis in porcine S-V cultures.  相似文献   

5.
The relationship between obese (ob) gene expression and preadipocyte differentiation was examined in primary cultures of porcine stromal-vascular (S-V) cells by Northern-blot analysis using a pig ob cDNA probe. Isolated adipocytes expressed high levels of ob gene, but S-V cells did not express the ob gene. Cultures were seeded with fetal bovine serum (FBS) plus dexamethasone (Dex) for 3 days followed by ITS (insulin 5 μg/ml, transferrin 5 μg/ml, and selenium 5 ng/ml) treatment for 6 days. Detectable levels of ob mRNA first appeared at day 1 with very low activity of glycerol phosphate dehydrogenase (GPDH). Levels of ob mRNA increased in parallel with preadipocyte number or GPDH activity at the later times in cultures. The depletion of preadipocytes by complement-mediated cytotoxicity at day 3 of culture resulted in markedly decreased ob mRNA expression. Immunocytochemical analysis showed that ob protein was localized in the cytosol of preadipocytes and adipocytes. These data indicated that the ob gene is expressed by preadipocytes and ob gene expression may be correlated with preadipocyte recruitment as well as fat cell size.  相似文献   

6.
Summary Insulinlike growth factor-1 (IGF-1) is both adipogenic and mitogenic to preadipose cell lines as well as primary stromal-vascular (SV) cells. The precise effect of IGF-1 on primary preadipocytes per se, however, has not been elucidated directly. In this study, primary porcine preadipocytes were exposed to IGF-1 while at three culture densities. The proportion of replicating preadipocytes was determined by labeling cells with an antiadipocyte/preadipocyte monoclonal antibody (MAb) concomitant with DNA measurement with propidium iodide. Flow cytometric analysis revealed that different seeding densities did not affect the relative proportion of preadipocytes (AD-1 positive) in cultures. However, IGF-1 treatment increased the proportion of preadipocytes at all densities but to a greater extent in more dense cultures. The resultant number of fat cell clusters formed was greater at higher densities and on IGF-1 treatment. The proportion of replicating cells in cultures decreased with increasing density. IGF-1 significantly increased replication at all densities and increased the number of replicating preadipocytes to the same extent independent of density. These results provide direct evidence of hormonal regulation of primary preadipocyte replication. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

7.
In this report, conditions have been established for utilizing monoclonal antibodies and fluorescence activated flow cytometry in studying antigen expression by primary porcine stromal-vascular cells cultured under various conditions. Single cells were isolated from cultures maintained in DME/F12 medium containing 10% fetal bovine serum, 2% pig serum, and containing 2% pig serum and 10 nM dexamethasone supplemented with growth hormone (GH), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta (TGF-beta). Flow cytometric analyses revealed that the proportion of cells expressing detectable levels of the AD-1 cells surface antigen was greater in cultures supplemented with 2% pig serum and 10 nM dexamethasone than in other media. In cultures, GH, TNF-alpha and TGF-beta each inhibited lipid deposition, whereas TNF-alpha and TGF-beta, but not GH, inhibited AD-1 antigen expression. Inhibition of lipid deposition as well as antigen expression by TNF-alpha and TGF-beta was reversible, but inhibition of cluster formation by GH was not reversed upon removal from cultures. In summary, differential effects of factors on surface antigen expression by preadipocytes are detectable by flow cytometry. Flow cytometric analysis using monoclonal antibodies produced against key developmentally regulated cell surface antigens is potentially a powerful analytical approach to the study of adipocyte development.  相似文献   

8.
The clonal preadipose cell line, MC3T3-G2/PA6, has the capacity to differentiate into adipocytes in response to glucocorticoids and to support in vitro growth of hemopoietic stem cells (CFU-S). To study the relationship between these capacities, we precultured the MC3T3-G2/PA6 cells for varying days in the presence or absence of dexamethasone and then cocultured them with mouse bone marrow cells. Logarithmically growing cultures contained no detectable adipocytes and showed the highest growth-supporting activity for CFU-S, whereas cultures containing the largest number of adipocytes showed the lowest activity. When bone marrow cells were seeded onto 3-day-old MC3T3-G2/PA6 preadipocyte layers at 1 X 10(5) cells/35-mm dish, day 12 CFU-S grew with a population doubling time of about 37 hr, and at least 75% of them were associated with the cell layer between days 2 and 7. In the absence of the preadipocytes, CFU-S were not detected in the adherent cell fraction and decreased with a half-life of about 18 hr. More than 80% of CFU-C were also found to be associated with the preadipocyte layer, and they increased about 24-fold in number during 7 days in culture. Morphologically, hemopoietic cells developing into mature granulocytes and macrophages were distributed between the layers of preadipocytes. Dendritic processes of preadipocytes were frequently in close alignment with the hemopoietic cells. However, adipocytes failed to show such an intimate association with hemopoietic cells. These results indicate that MC3T3-G2/PA6 cells in the preadipocyte stage, but not in the adipocyte stage, have the capacity to support CFU-S growth, and that hemopoiesis in our cocultivation system proceed within the microenvironmental milieu provided by MC3T3-G2/PA6 preadipocytes.  相似文献   

9.
Stromal-vascular (S-V) cells from rat inguinal fat depots were isolated and cultured in medium containing fetal bovine serum (FBS) and differentiated in defined medium until lipid accumulation was apparent. C/EBPalpha, beta and delta levels were evaluated for different growth conditions and at different times using Western blots. Immediately after isolation C/EBPalpha, beta and delta could not be detected in S-V cells. After seeding for 24 h in Dulbecco's modified Eagle's medium (DMEM) with FBS, C/EBPalpha, beta and delta could all be detected. Cells at day 1 of culture in insulin, transferrin, triiodothyronine and selenium (ITTS) had increased levels of C/EBPalpha and continued steady high levels to day 6 of culture. Cultures grown in DMEM alone, with no ITTS, showed C/EBPalpha levels similar to ITTS cultures at day 1 and day 3; however, levels diminished after day 3. DMEM cultures also showed lipid accumulation at day 6; however, the number of cells and the amount of lipid cell were reduced from levels observed in ITTS cultures. C/EBPbeta was expressed uniformly throughout the culture period in either DMEM or ITTS cultures while C/EBPdelta expression was higher with DMEM treatment than with ITTS. Treatment of 2 day DMEM cultures with FBS increased levels of C/EBPbeta and delta but significantly reduced levels of C/EBPalpha. Immunocytochemical analysis of S-V cells at day 1 of culture showed a similar percentage of cells stained in DMEM cultures and ITTS cultures. However, by day 6 of culture the percentage of cells staining positively for C/EBPalpha in DMEM had been reduced by one half while in ITTS the percent positive cells remained about the same. Our results indicate that ITTS is not necessary for the induction of C/EBPalpha and accumulation of lipid in S-V cells. However, ITTS is responsible for maintaining C/EBPalpha and enhanced lipid accumulation. Because C/EBPalpha, beta and delta expression occurs very early in cell culture and C/EBPalpha and delta expression continues to increase in DMEM without any apparent inducing agents, our results suggest that these factors may be expressed by the same cells in vivo before being placed in culture. Thus, a large fraction of S-V cells may be further along in the differentiation program than 3T3 cells are when they begin differentiation.  相似文献   

10.
11.
Studies were conducted to determine the influence of thyroxine (T4) in vivo on preadipocyte development and insulin-like growth factor-I (IGF-I) and IGF binding proteins (IGFBPs) secretion in stromal-vas-cular (S-V) cultures. Fetal pigs were hypophysectomized (hypox) at 70 days of gestation, implanted with T4 pellets, and fetuses from the dam at 75 days of gestation. In a second experiment, hypox and T4 implantation were performed at 75 days and fetal pigs removed at 95 days of gestation. Primary cultures of stromal vascular (S-V) cells derived from fetal adipose tissue were established. Cultures were stained for morphological analysis and conditioned media were collected for IGF-I determination by radioimmunoassay (RIA) and IGFBP analysis by Western blotting. After only 5 days of T4 treatment, fat cell cluster number and size and lipid deposition in cultures were significantly increased compared to cultures from untreated hypox fetuses. Fetal hypox reduced IGF-I secretion by preadipocytes at both ages and T4 treatment completely normalized IGF-I secretion (p < 0.05). Four IGFBPs (BP-1, BP-2, BP-3 & BP-4) detected in S-V cultures derived from 95-day fetuses were decreased in concentration by hypox by 44 ± 9.4%, 32 ± 9.7%, 42 ± 12% and 53 ± 6.9%. In cultures derived from T4 treated hypox fetuses, the levels of these four IGFBPs were increased by 187 ± 25%, 239 ± 38%, 190 ± 5% and 347 ± 43% over control values, respectively. In cultures from 75-day fetuses, only IGFBP-2 (major one) and BP-1 (minor one) were detected and their secretion was also decreased by hypox and elevated by T4 treatment (190 ± 49.5%, 156 ± 30%, respectively, of controls). The results provide direct evidence that T4 has a major influence on fetal preadipocyte development. T4 stimulated production of IGF-I and IGFBP in fetal S-V cultures, which in turn, may have mediated the capability of T4 to enhance fetal adipose tissue development.  相似文献   

12.
Abstract: Chromaffin cells were isolated from bovine adrenal glands and fractionated into two distinct subpopulations by density gradient centrifugation on Percoll. Cells in the more dense fraction stored epinephrine (E) as their predominant catecholamine (81% of total catecholamines), contained high levels of phenylethanolamine N-methyltransferase (PNMT) activity, and exhibited intense PNMT immunoreactivity. This population of chromaffin cells was termed the E-rich cell population. Cells in the less dense fraction, the norepinephrine (NE)-rich cell population, stored predominantly NE (75% of total catecholamines). Although the NE-rich cells had only 3% as much PNMT activity as did the E-rich cells, 20% of the NE-rich cells were PNMT immunoreactive. This suggested that the PNMT-positive cells in the NE-rich cell cultures contained less PNMT per cell than did E-rich cells and may not be typical adrenergic cells. The regulation of PNMT mRNA levels and PNMT activity in primary cultures of E-rich and NE-rich cells was compared. At the time the cells were isolated, PNMT mRNA levels in NE-rich cells were ~20% of those in E-rich cells; within 48 h in culture, PNMT mRNA in both populations declined to almost undetectable levels. Treatment with dexamethasone increased PNMT mRNA levels and PNMT activity in both populations. In E-rich cells, dexamethasone restored PNMT mRNA to the level seen in freshly isolated cells and increased PNMT activity twofold. In NE-rich cells, dexamethasone increased PNMT mRNA to levels twice those found in freshly isolated cells and increased PNMT activity sixfold. Cycloheximide blocked the effects of dexamethasone on PNMT mRNA expression in NE-rich cells but had little effect in E-rich cells. Angiotensin II, forskolin, and phorbol 12,13-dibutyrate elicited large increases in PNMT mRNA levels in E-rich cells but had no effect in NE-rich cells. Our data suggest that PNMT expression is regulated differently in the two chromaffin cell subpopulations.  相似文献   

13.
Adipogenesis and lipid storage in human adipose tissue are inhibited by androgens such as DHT. Inactivation of DHT to 3α-diol is stimulated by glucocorticoids in human preadipocytes. We sought to characterize glucocorticoid-induced androgen inactivation in human preadipocytes and to establish its role in the antiadipogenic action of DHT. Subcutaneous and omental primary preadipocyte cultures were established from fat samples obtained in subjects undergoing abdominal surgeries. Inactivation of DHT to 3α/β-diol for 24 h was measured in dexamethasone- or vehicle-treated cells. Specific downregulation of aldo-keto reductase 1C (AKR1C) enzymes in human preadipocytes was achieved using RNA interference. In whole adipose tissue sample, cortisol production was positively correlated with androgen inactivation in both subcutaneous and omental adipose tissue (P < 0.05). Maximal dexamethasone (1 μM) stimulation of DHT inactivation was higher in omental compared with subcutaneous fat from men as well as subcutaneous and omental fat from women (P < 0.05). A significant positive correlation was observed between BMI and maximal dexamethasone-induced DHT inactivation rates in subcutaneous and omental adipose tissue of men and women (r = 0.24, n = 26, P < 0.01). siRNA-induced downregulation of AKR1C2, but not AKR1C1 or AKR1C3, significantly reduced basal and glucocorticoid-induced androgen inactivation rates (P < 0.05). The inhibitory action of DHT on preadipocyte differentiation was potentiated following AKR1C2 but not AKR1C1 or AKR1C3 downregulation. Specifically, lipid accumulation, G3PDH activity, and FABP4 mRNA expression in differentiated preadipocytes exposed to DHT were reduced further upon AKR1C2 siRNA transfection. We conclude that glucocorticoid-induced androgen inactivation is mediated by AKR1C2 and is particularly effective in omental preadipocytes of obese men. The interplay between glucocorticoids and AKR1C2-dependent androgen inactivation may locally modulate adipogenesis and lipid accumulation in a depot-specific manner.  相似文献   

14.
The subtype of the beta-adrenergic receptor expressed in 3T3-L1 preadipocytes and adipocytes differentiated with dexamethasone and methylisobutylxanthine was determined by comparing the affinity of the receptors for epinephrine, norepinephrine, and beta-1 and beta-2 selective antagonist, 8-fold more avidly than adipocyte receptors. In contrast, adipocyte beta-receptors had a 10-fold higher affinity for epinephrine than for norepinephrine and complexed the beta-2 selective agonist zinterol with a 20-fold higher affinity than preadipocyte receptors. Hofstee plots and computer analyses of the binding data revealed that the populations of beta-1 receptors in preadipocytes and beta-2 receptors in adipocytes were nearly homogeneous. Preliminary characterizations of the beta-receptor phenotype in (nondifferentiating) 3T3-C2 cells treated with dexamethasone and methylisobutylxanthine and 3T3-422A adipocytes differentiated with insulin indicated that the expression of beta-2 receptors was not correlated with differentiation, but rather with exposure of the cells to dexamethasone and methylisobutylxanthine. The regulator of beta-receptor subtype was identified as the glucocorticoid analog, dexamethasone, by employing 3T3-L1 adipocytes which were stimulated to differentiate with methylisobutylxanthine and insulin. Detailed binding studies showed that under these conditions the adipocyte receptors retain beta-1 character. Subsequent treatment with 0.5 microM dexamethasone promoted the loss of beta-1 receptors, the appearance of beta-2 receptors, and a net 2- to 3-fold increase in the number of beta-receptors. Dexamethasone effected a complete switch from beta-1 to beta-2 subtype at concentrations as low as 2.5 nM while other steroids were ineffective below a concentration of 10 microM.  相似文献   

15.
Progress has been made in elucidating the cell-surface phenotype of primary adipose progenitors; however, specific functional markers and distinct molecular signatures of fat depot-specific preadipocytes have remained elusive. In this study, we label committed murine adipose progenitors through expression of GFP from the genetic locus for Zfp423, a gene controlling preadipocyte determination. Selection of GFP-expressing fibroblasts from either subcutaneous or visceral adipose-derived stromal vascular cultures isolates stably committed preadipocytes that undergo robust adipogenesis. Immunohistochemistry for Zfp423-driven GFP expression in?vivo confirms a perivascular origin of preadipocytes within both white and brown adipose tissues. Interestingly, a small subset of capillary endothelial cells within white and brown fat also express this marker, suggesting a contribution of specialized endothelial cells to the adipose lineage. Zfp423(GFP) mice represent a simple tool for the specific localization and isolation of molecularly defined preadipocytes from distinct adipose tissue depots.  相似文献   

16.
17.
White adipocyte proliferation is a hallmark of obesity, but it largely remains a mechanistic mystery. We and others previously demonstrated that surgical denervation of white adipose tissue (WAT) triggers increases in fat cell number, but it is unknown whether this was due to preadipocyte proliferation or maturation of existing preadipocytes that allowed them to be counted. In addition, surgical denervation severs not only sympathetic but also sensory innervation of WAT. Therefore, we tested whether sympathetic WAT denervation triggers adipocyte proliferation using 5-bromo-2'-deoxyuridine (BrdU) as a marker of proliferation and quantified BrdU-immunoreactive (ir) cells that were co-labeled with AD-3-ir, an adipocyte-specific membrane protein marker. The unilateral denervation model was used for all experiments where Siberian hamster inguinal WAT (IWAT) was unilaterally denervated, the contralateral pad was sham denervated serving as a within-animal control, and then BrdU was injected systemically for 6 days. When IWAT was surgically denervated, severing both sympathetic and sensory nerves, tyrosine hydroxylase (TH)-ir, a sympathetic nerve marker, and calcitonin gene-related peptide (CGRP)-ir, a sensory nerve marker, were significantly decreased, and BrdU+AD-3-ir adipocytes were increased approximately 300%. When IWAT was selectively sensory denervated via local microinjections of capsaicin, a sensory nerve-specific toxin, CGRP-ir, but not TH-ir, was decreased, and BrdU+AD-3-ir adipocytes were unchanged. When IWAT was selectively sympathetically denervated via local microinjections of 6-hydroxy-dopamine, a catecholaminergic-specific toxin, TH-ir, but not CGRP-ir, was significantly decreased, and BrdU+AD-3-ir adipocytes were increased approximately 400%. Collectively, these data provide the first direct evidence that sympathetic nerves inhibit white adipocyte proliferation in vivo.  相似文献   

18.
The purpose of this study was to examine the effects of a known inhibitor, transforming growth factor-beta1 (TGF-beta1) versus the known stimulators insulin-like growth factor-1 (IGF-1) and dexamethasone (DEX) on pig preadipocyte differentiation in serum and serum-free primary cultures. In cultures with serum, preadipocyte and nonpreadipocyte replication was increased (p < 0.02) by IGF-1 and by TGF-beta1 (p < 0.05; p < 0.001). IGF-1 (10 nM) enhanced preadipocyte differentiation (p < 0.05) in serum-supplemented (1% pig serum) cultures, whereas TGF-beta1 (15 pM) reduced preadipocyte differentiation (p < 0.01) in the presence and absence of IGF-1. Furthermore, GPDH (SN-glycerol-3-phosphate dehydrogenase) specific activity (marker that indicates differentiation) was decreased (p < 0.05) by adding TGF-beta1 to serum-free cultures, but TGF-beta1 had little effect in serum-supplemented cultures. DEX significantly enhanced GPDH activity and fat cell cluster number, whereas pretreatment with TGF-beta1 eliminated the DEX enhancement. We have shown for the first time that TGF-beta can decrease (p < 0.01) the cellular secretion of IGF-1 by pig adipose tissue cells and counter the effects of exogenous IGF-1. These studies indicate that TGF-beta1 may not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy (lipid filling) at a later stage of development.  相似文献   

19.
Summary Cells in fetal adipose tissue and cells in vitro are characterized by rapid proliferation. Serum factors have been shown to be important for the rapid proliferation of cells in vitro. The present experiment was performed to determine if neuroendocrine regulatory mechanisms of the fetus can influence the actions of serum factors on preadipocyte proliferation and differentiation in vitro.Sera were obtained from decapitated fetal pigs and intact littermates during gestation. Sera were tested for their effects on primary cultures of preadipocytes and stromalvascular cells derived from inguinal adipose tissue of young Sprague-Dawley rats. Coverslip cultures were used for histochemical analysis of enzymes after 12 days of incubation with test media.Analysis of growth curves produced from sequential [3H]-thymidine labeling indicated that fetal age influences rates of proliferation. Sera from decapitated fetal pigs specifically reduced the number of proliferating preadipocytes in culture. Sera from decapitated fetal pigs induced a minimum of 50% less differentiation of sn-glycerol-3-phosphate dehydrogenase activity than sera from intact pigs at all fetal ages. Histochemical staining for enzymes of differentiating preadipocytes was also reduced in cultures incubated with sera from decapitated fetal pigs in comparison to sera from intact pigs. The present study has demonstrated that the in vivo effect of decapitation on fetal adipose tissue development is a consequence of alterations in systemic factors present in serum in response to removal of central regulation by the hypothalamic-pituitary axis.  相似文献   

20.
To understand the significance of the reported depot differences in preadipocyte dynamics, we developed a procedure to identify committed preadipocytes in the stromovascular fraction of fresh human adipose tissue. We documented that adipocyte fatty acid binding protein (aP2) is expressed in human preadipocyte clones capable of replication, indicating that can be used as a marker of committed preadipocytes. Because aP2 expression can be induced in macrophages, stromovascular cells were also stained for the macrophage marker CD68. We found aP2+CD68- cells (designated as committed preadipocytes) that did not have lipid droplets (true preadipocytes) and that did have lipid droplets < 6.5 microm in diameter (very immature adipocytes). Adipose tissue from subcutaneous, omental, and mesenteric depots was obtained from nine patients undergoing bariatric surgery for measurement of stromovascular cell number, the number of committed preadipocytes (aP2+CD68-), aP2+ macrophages (aP2+CD68+), and aP2- macrophages (aP2-CD68+). The number of committed preadipocytes did not differ significantly between depots but varied >20-fold among individuals. Total cell number, stromovascular cell number, and the number of aP2- macrophages was less (P < 0.05) in subcutaneous than in omental fat (means +/- SE, in millions: subcutaneous, 2.3 +/- 0.3, 1.4 +/- 0.3, and 0.17 +/- 0.08; and omental, 4.8 +/- 0.7, 3.8 +/- 0.5, and 0.34 +/- 0.06); mesenteric depot was intermediate. These data indicate that the cellular composition of adipose tissue varies between depots and between individuals. The ability to quantify committed preadipocytes in fresh adipose tissue should facilitate study of adipose tissue biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号