首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Mannitol metabolism was evaluated in fruiting bodies of Lentinus edodes. Cell extracts were prepared from fruiting bodies, and key enzymes involved in mannitol metabolism were assayed, including hexokinase, mannitol dehydrogenase, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, and fructose-6-phosphatase. Mannitol dehydrogenase, fructose-6-phosphatase, mannitol-1-phosphatase, and hexokinase activities were found in extracts of fruiting bodies. However, mannitol-1-phosphate dehydrogenase activity was not detected. Mycelial cultures were grown in an enriched liquid medium, and enzymes of the mannitol cycle were assayed in cell extracts of rapidly growing cells. Mannitol-1-phosphate dehydrogenase activity was also not found in mycelial extracts. Hence, evidence for a complete mannitol cycle both in vegetative mycelia and during mushroom development was lacking. The pathway of mannitol synthesis in L. edodes appears to utilize fructose as an intermediate.  相似文献   

2.
A metabolic pathway, known as the mannitol cycle in fungi, has been identified as a new entity in the eulittoral mangrove red algaCaloglossa leprieurii (Montagne) J. Agardh. Three specific enzymes, mannitol-1-phosphate dehydrogenase (Mt1PDH; EC 1.1.1.17), mannitol-1-phosphatase (MtlPase; EC 3.1.3.22), mannitol dehydrogenase (MtDH; EC 1.1.1.67) and one nonspecific hexokinase (HK; EC 2.7.1.1) were determined and biochemically characterized in cell-free extracts. Mannitol-1-phosphate dehydrogenase showed activity maxima at pH 7.0 [fructose-6-phosphate (F6P) reduction] and pH 8.5 [oxidation of mannitol-1-phosphate (Mt1P)], and a very high specificity for both carbohydrate substrates. TheK m values were 1.4 mM for F6P, 0.09 mM for MOP, 0.020 mM for NADH and 0.023 mM for NAD+. For the dephosphorylation of MOP, MtlPase exhibited a pH optimum at 7.2, aK m value of 1.2 mM and a high requirement of Mg2+ for activation. Mannitol dehydrogenase had activity maxima at pH 7.0 (fructose reduction) and pH 9.8 (mannitol oxidation), and was less substrate-specific than Mt1PDH and MtlPase, i.e. it also catalyzed reactions in the oxidative direction with arabitol (64.9%), sorbitol (31%) and xylitol (24.8%). This enzyme showedK m values of 39 mM for fructose, 7.9 mM for mannitol, 0.14 mM for NADH and 0.075 mM for NAD+. For the non-specific HK, only theK m values for fructose (0.19 mM) and glucose (7.5 mM) were determined. The activities of the anabolic enzymes Mt1PDH and MtlPase were always at least two orders of magnitude higher than those of the degradative enzymes, indicating a net carbon flow towards a high intracellular mannitol pool. The function of mannitol metabolism inC. leprieurii as a biochemical adaptation to the environmental extremes in the mangrove habitat is discussed.Abbreviations F6P fructose-6-phosphate - HK hexokinase - Mt1P mannitol-1-phosphate - Mt1PDH mannitol-1-phosphate dehydrogenase - Mt1Pase mannitol-1-phosphatase - MtDH mannitol dehydrogenase  相似文献   

3.
Addition of sodium nitrate to growing cultures ofAspergillus parasiticus (ATCC 36537) induces the synthesis of enzymes involved in nitrate assimilation (NO 3 reductase), of enzymes in the pentose pathway (glucose-6-phosphate dehydrogenase), and of enzymes in the mannitol cycle (mannitol- and mannitol-1-phosphate dehydrogenases). Addition of NO 3 also causes a dose-dependent suppression of synthesis of the polyketide secondary metabolite, versicolorin A. We suggest that in the presence of NO 3 plus peptone, the cytoplasmic NADPH/NADP ratio may be elevated, resulting in increased conversion of malonyl coenzyme A to fatty acid rather than to polyketide.  相似文献   

4.
Several representatives of marine brown macroalgae (Phaeophyceae) including Fucus serratus L., Fucus spiralis L. and Fucus vesiculosus L. as well as Laminaria digitata (Huds.) Lamour., Laminaria hyperborea (Gunn.) Foslie and Laminaria saccharina (L.) Lamour. were investigated with particular regard to features of biosynthesis of the storage product mannitol. The respective catalytic system involved in the last step of mannitol formation, mannitol-1-phosphate dehydrogenase, appears to be a cytoplasmic enzyme as may be judged from the degree of correlation with the chloroplast key enzyme ribulose-1,5-bisphosphate carboxylase in different tissues of Laminaria digitata and Laminaria saccharina. Activity of mannitol-1-phosphate dehydrogenase in vitro is not affected by mannitol-l-phosphate or free mannitol, suggesting that mannitol biosynthesis in vivo) is mainly controlled by the environment and/or developmental stage. Certain inorganic ions such as NO3- (including K+) exert a strong influence on the activity of mannitol1-phosphate dehydrogenase thus suggesting that the intracellular pools of stored NO3- and mannitol are confined to spatially separated cellular compartments.  相似文献   

5.
The enzymes mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, mannitol dehydrogenase and hexokinase participate in an enzymatic cycle in the fungus Alternaria alternata. One turn of the cycle gives the net result: NADH + NADP+ + ATP leads to NAD+ + NADPH + ADP + Pi. The cycle alone can meet the total need of NADPH formation for fat synthesis in the organism. A polyketide producing strain of A. alternata shows a lower mannitol oxidation as well as a lower fat synthesis than a nonproducing mutant, supporting the hypothesis that polyketide formation is favoured at limiting NADPH production. It is further suggested that the mannitol cycle is regulating the glycolytic flux by substrate withdrawal from phosphofructokinase.  相似文献   

6.
《Experimental mycology》1992,16(1):44-51
Alternaria alternata produces the polyketide mycotoxins alternariol (AOH) and alternariol monomethylether (AME) during the stationary growth phase when cultured in darkness. AME is formed by methylation of AOH by an alternariol-O-methyltransferase (AOH-MT). This methyltransferase was purified to near homogeneity from dark grown cultures ofA. alternata resulting in a 240-fold purification. The major protein in the enriched fraction of AOH-MT had a mass of 43,000 Da and was shown to bind the cofactorS-adenosyl-[3H]methionine by photoaffinity labeling, suggesting that this polypeptide contained the active site. WhenA. alternata was cultured in white light, the accumulation of AOH and AME was reduced to less than 4% of the production in darkness which is in agreement with earlier results. This reduction in polyketide content was accompanied by a reduced AOH-MT activity in extracts from light grown cultures. However, the activity of AOH-MT in mycelia grown in light was only reduced to 30% of the activity in dark grown cultures. Thus, it seems that the main target for light suppression of polyketide accumulation inA. alternata is either the activity or formation of the enzyme synthesizing AOH or the precursor availability for AOH synthesis.  相似文献   

7.
The levels of phosphofructokinase (EC 2.7.1.11) and mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) have been determined in a number of Mucor and Penicillium species. Mannitol-1-phosphate dehydrogenase was found in only one species of mucor, Mucor rouxii, and this with a specific activity much lower than that found in Penicillium species. All of the fungi tested in the Ascomycetes class exhibited mannitol-1-phosphate dehydrogenase activity. Interference from both mannitol-1-phosphate dehydrogenase and NADH oxidase (EC 1.6.99.5) caused some difficulty initially in detecting phosphofructokinase in Penicillium species; the Penicillium phosphofructokinase is very unstable. Penicillium notatum accumulates mannitol intracellularly; detection of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase (EC 3.1.3.22) activity in cell-free extracts indicates that the mannitol is formed from glucose via fructose-6-phosphate and mannitol-1-phosphate; no direct reduction of fructose to mannitol could be detected. The mannitol-1-phosphate dehydrogenase was specific for mannitol-1-phosphate and fructose-6-phosphate; NADP+(H) could not replace NAD+(H). The phosphatase (EC3.1.3.22) exhibited a distinct preference for mannitol-1-phosphate as substrate; all other substrates tested exhibited less than 25% of the activity observed with mannitol-1-phosphate.  相似文献   

8.
Japanese black pine (Pinus thunbergii) cotyledons were found to synthesize chlorophylls in complete darkness during germination, although the synthesis was not as great as that in the light. The compositions of thylakoid components in plastids of cotyledons grown in the dark and light were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of polypeptides and spectroscopic determination of membrane redox components. All thylakoid membrane proteins found in preparations from light-grown cotyledons were also present in preparations from dark-grown cotyledons. However, levels of photosystem I, photosystem II, cytochrome b[ill]/f, and light-harvesting chlorophyll-protein complexes in dark-grown cotyledons were only one-fourth of those in light-grown cotyledons, on a fresh weight basis. These results suggest that the low abundance of thylakoid components in dark-grown cotyledons is associated with the limited supply of chlorophyll needed to assemble the two photosystem complexes and the light-harvesting chlorophyll-protein complex.  相似文献   

9.
《Experimental mycology》1986,10(3):252-255
The time at which polyketide synthesis inAlternaria alternata is inhibited by white light was examined. Light exposure during the growth phase (no polyketide production) inhibited accumulation of polyketides at stationary growth phase. A light pulse during the production phase also inhibited further accumulation of polyketides. Two minutes of light applied during early production phase was enough to reduce polyketide levels significantly at the end of incubation relative to dark control.  相似文献   

10.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

11.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

12.
D-mannitol metabolism by Aspergillus candidus   总被引:2,自引:1,他引:1       下载免费PDF全文
Pathways of mannitol biosynthesis and utilization in Aspergillus candidus NRRL 305 were studied in cell-free extracts of washed mycelia prepared by sonic and French pressure cell treatments. A nicotinamide adenine dinucleotide-linked mannitol-1-phosphate (M1P) dehydrogenase was found in French pressure cell extracts of d-glucose-grown cells, whereas a specific mannitol-1-phosphatase was present in extracts prepared by both methods. The existence of these two enzymes indicated that mannitol may be synthesized in this organism by the reduction of fructose-6-phosphate. A specific nicotinamide adenine dinucleotide phosphate-linked mannitol dehydrogenase was also identified in both extracts. This enzyme may have been involved in mannitol utilization. However, the level of the mannitol dehydrogenase appeared to be substantially reduced in extracts from mannitol-grown cells, whereas the level of M1P dehydrogenase was increased. A hexokinase has been identified in this organism. Fructose-6-phosphatase, glucose isomerase, and mannitol kinase could not be demonstrated.  相似文献   

13.
Enzymes of glucose metabolism in normal mouse pancreatic islets   总被引:14,自引:14,他引:0       下载免费PDF全文
1. Glucose-phosphorylating and glucose 6-phosphatase activities, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP+-linked isocitrate dehydrogenase, `malic' enzyme and pyruvate carboxylase were assayed in homogenates of normal mouse islets. 2. Two glucose-phosphorylating activities were detected; the major activity had Km 0.075mm for glucose and was inhibited by glucose 6-phosphate (non-competitive with glucose) and mannoheptulose (competitive with glucose). The other (minor) activity had a high Km for glucose (mean value 16mm) and was apparently not inhibited by glucose 6-phosphate. 3. Glucose 6-phosphatase activity was present in amounts comparable with the total glucose-phosphorylating activity, with Km 1mm for glucose 6-phosphate. Glucose was an inhibitor and the inhibition showed mixed kinetics. No inhibition of glucose 6-phosphate hydrolysis was observed with mannose, citrate or tolbutamide. The inhibition by glucose was not reversed by mannoheptulose. 4. 6-Phosphogluconate dehydrogenase had Km values of 2.5 and 21μm for NADP+ and 6-phosphogluconate respectively. 5. Glucose 6-phosphate dehydrogenase had Km values of 4 and 22μm for NADP+ and glucose 6-phosphate. The Km for glucose 6-phosphate was considerably below the intra-islet concentration of glucose 6-phosphate at physiological extracellular glucose concentrations. The enzyme had no apparent requirement for cations. Of a number of possible modifiers of glucose 6-phosphate dehydrogenase, only NADPH was inhibitory. The inhibition by NADPH was competitive with NADP+ and apparently mixed with respect to glucose 6-phosphate. 6. NADP+–isocitrate dehydrogenase was present but the islet homogenate contained little, if any, `malic' enzyme. The presence of pyruvate carboxylase was also demonstrated. 7. The results obtained are discussed with reference to glucose phosphorylation and glucose 6-phosphate oxidation in the intact mouse islet, and the possible nature of the β-cell glucoreceptor mechanism.  相似文献   

14.
Golenkinia, Chlorella protothecoides, and mutant C-2A′ of Scenedesmus were grown in darkness and on media in which chlorophyll synthesis is reduced significantly. The pigments were analyzed by spectrophotometry or by paper chromatography and compared with similar extracts from light-grown algae and dark-grown beans. No protochlorophyll(ide) was present in the dark-grown algae indicating that chlorophyll synthesis is blocked by a mechanism other than feedback regulation of aminolevulinic acid synthesis by protochlorophyll(ide) which has been proposed for flowering plants.  相似文献   

15.
d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen biosynthesis increased the yield of mannitol presumably by redirecting the metabolic flux to mannitol under conditions where glycogen normally accumulates. A total mannitol yield equivalent to 10% of cell dry weight was obtained in cell cultures synthesizing glycogen while the yield increased to 32% of cell dry weight in cell cultures deficient in glycogen synthesis; in both cases about 75% of the mannitol was released from the cells into the culture medium by an unknown mechanism. The highest productivity was obtained in a glycogen synthase deficient culture that after 12 days showed a mannitol concentration of 1.1 g mannitol L−1 and a production rate of 0.15 g mannitol L−1 day−1. This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria.  相似文献   

16.
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was purified from mycelium of Aspergillus parasiticus (1-11-105 Whl). The enzyme had a molecular weight of 1.8 × 105 and was composed of four subunits of apparently equal size. The substrate specificity was very strict, only glucose 6-phosphate and glucose being oxidized by NADP or thio-NADP. Zinc ion was a powerful inhibitor of the enzyme, inhibition being competitive with respect to glucose 6-phosphate, with Ki about 2.5 μm. Other divalent metal ions which also serve as inhibitors are nickel, cadmium, and cobalt. It is proposed that the stimulation of polyketide synthesis by zinc ion may be mediated in part by inhibition of glucose-6-phosphate dehydrogenase.  相似文献   

17.
D-Mannitol utilization in Salmonella typhimurium   总被引:12,自引:9,他引:3  
A biochemical and genetic analysis of d-mannitol metabolism in Salmonella typhimurium indicates that d-mannitol is phosphorylated by the phosphoenolpyruvate-dependent phosphotransferase system. d-Mannitol-1-phosphate is converted to d-fructose-6-phosphate by mannitol-1-phosphate dehydrogenase. Two classes of mannitol mutants are described. Both map at about 115 min on the Salmonella chromosome. Mutants missing mannitol-1-phosphate dehydrogenase activity are mannitol sensitive; i.e., either growth is inhibited or the cells are lysed in the presence of mannitol. In a strain missing adenyl cyclase activity, the mannitol genes require exogenous cyclic adenosine-3',5'-monophosphate for expression.  相似文献   

18.
The aims of this work were to compare the roles of sorbitol and sucrose in seedlings of Malus domestica, to discover which tissues synthesize sorbitol and which break it down, and to examine these tissues for enzymes of sorbitol metabolism. The detailed distribution of label was determined after supplying intact seedlings with 14CO2, and excised parts of seedlings with [U-14C]fructose and [U-14C]sorbitol. The results showed that appreciable synthesis of sorbitol occurred only in the leaves but did not depend directly on photosynthesis. All tissues examined metabolized sorbitol but metabolism was extensive only in root apices, and in leaves which had been kept in the dark. The above experiments suggest that sorbitol supplements but does not replace sucrose. Extracts of apple leaves showed no trace of either a polyol or a polyol phosphate dehydrogenase but did exhibit sorbitol-6-phosphate phosphatase activity. A limited number of experiments with extracts of the blades of Laminaria digitata indicated that they contained mannitol-1-phosphate phosphatase and mannitol dehydrogenase.  相似文献   

19.
The mannitol uptake systems in marine Vibrio and Pseudomonas isolates from the kelp beds off the South African west coast were examined. The fermentative Vibrio isolate possessed a constitutive rapid mannitol uptake system and also a soluble mannitol-1-phosphate dehydrogenase, indicative of a mannitol phosphotransferase system. An inducible, relatively less active mannitol uptake system was detected in the oxidative Pseudomonas isolate, and this strain possessed a mannitol dehydrogenase. The maintenance of these systems during starvation survival was studied. The Vibrio isolate maintained its initial uptake system for approximately 5 weeks of starvation, after which time the uptake system was replaced by one with a higher affinity for mannitol. The mannitol transport system of the Pseudomonas isolate was depressed early in starvation (30 h) but could be readily induced by exogenous mannitol after 6 weeks of starvation. The relative proportions of mannitol which was incorporated and respired were determined in starved Vibrio and Pseudomonas strains.  相似文献   

20.
J. H. Lukens  R. D. Durbin 《Planta》1985,165(3):311-321
Ultrastructural and biochemical approaches were used to investigate the mode of action of tagetitoxin, a nonhost-specific phytotoxin produced by Pseudomonas syringae pv. tagetis (Hellmers) Young, Dye and Wilkie, which causes chlorosis in developing — but not mature — leaves. Tagetitoxin has no effect on the growth rate or morphology of developing leaves of wheat (Triticum aestivum L.) seedlings. Its cytological effects are limited to plastid aberrations; in both light-and dark-grown leaves treated with toxin, internal plastid membranes fail to develop normally and plastid ribosomes are absent, whereas mitochondrial and cytoplasmic ribosomes are unaffected. The activity of a plastid stromal enzyme, ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39), which is co-coded by nuclear and chloroplast genes, is markedly lower in extracts of both light-and dark-grown toxin-treated leaves, whereas the activity of another stromal enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-G-3P-DH, EC 1.2.1.13), which is coded only by the nuclear genome, is significantly lower in extracts of light-grown, but not of dark-grown, treated leaves. The mitochondrial enzymes fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) are unaffected by toxin in dark-grown leaves, but fumarase activity is reduced in light-grown ones. Four peroxisomal enzyme activities are lowered by toxin treatment in both light- and dark-grown leaves. Light- and dark-grown, toxintreated leaves contain about 50% and 75%, respectively, of the total protein of untreated leaves. There are threefold and twofold increases in free amino acids in light-grown and dark-grown treated leaves, respectively. In general, the effects of tagetitoxin are more extensive and exaggerated in light-grown than in dark-grown leaves. We conclude that tagetitoxin interferes primarily with a light-independent aspect of chloroplast-specific metabolism which is important in plastid biogenesis.Abbreviations NADP-G-3-DH NADP-glyceraldehyde-3-phosphate dehydrogenase - PLB prolamellar body - RuBP-Case ribulose-1,5-bisphosphate carboxylase - SADH shikimic acid dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号