首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Experimental mycology》1986,10(1):42-51
Inhibition of RNA synthesis with actinomycin D as late as 210 min (T210) afterBlastocladiella emersonii is induced to sporulate results in complete blockage of germ tube formation in the next generation. In agreement with other reports, actinomycin D added during germination did not block germ tube formation. Protein synthesis during germination is reduced by approximately one-half when actinomycin D is added atT210 but remains at virtually control levels when actinomycin D is added during germination. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel analyses of the abundant proteins synthesizedin vivo during the first hour of germination revealed no qualitative differences in the proteins which accumulate when control cells are compared to cells treated with actinomycin D atT210. Comparison of proteins synthesized from 20 to 40 min germination vs 40 to 60 min germination demonstrated that actinomycin D alters the temporal pattern of accumulation of some abundant proteins. The RNA synthesized afterT210 is associated with polysomes, suggesting that an mRNA fraction made in late sporulation is required for a germ tube. The available data do not exclude the possibility that a regulatory RNA synthesized during late sporulation is required for germ tube formation.  相似文献   

2.
3.
The RNA of full-grown oocytes of Xenopus laevis contains two distinct size classes of poly(A), designated poly(A)S and poly(A)L, which contain 15–30 (mean = 20) and 40–80 (mean = 61) A residues, respectively. Both poly(A)L and poly(A)S are associated with RNA which is heterogeneous in size. The two classes of poly(A)+ RNA can be separated by affinity chromatography: Only poly(A)L+ RNA binds to oligo(dT)-cellulose under appropriate conditions, but up to 50% of the poly(A)S+ RNA can be isolated from the void fraction by binding to poly(U)-Sepharose. Both classes of poly(A)+ RNA are active as messenger RNA in an in vitro system and yield identical patterns of in vitro protein products. Previtellogenic oocytes contain almost exclusively poly(A)L, which accumulates up to vitellogenesis but remains almost constant in amount (molecules/oocyte) during vitellogenesis and in the full-grown oocyte. Poly(A)S accumulates (molecules/oocyte) from early vitellogenesis up to the full-grown oocyte. The total number of poly(A)+ RNA molecules per oocyte increases throughout oogenesis from 2 × 1010/previtellogenic oocyte [80–90% poly(A)L] to 20 × 1010/full-grown oocyte (25–40% poly(A)L). It is argued that poly(A)S is protected from degradation in the oocyte, thus stabilizing the “maternal” poly(A)+ mRNA.  相似文献   

4.
5.
6.
To determine when the dormant mRNA of Blastocladiella emersonii zoospores is synthesized, the metabolism of poly(A) RNA and rRNA was studied during growth and sporulation using pulse-chase techniques. Zoospore poly(A) RNA is synthesized at all stages of the growth cycle investigated in cultures grown either on a normal 15-hr growth cycle or in minicyclic cultures induced to sporulate after only 6.5 hr growth. For cells labeled during the growth phase the specific activity of the pulse-labeled poly(A) RNA and rRNA was identical at the beginning and end of sporulation for any of the 2-hr labeling times investigated. From this it was concluded there is neither a preferential conservation nor degradation during sporulation of the poly(A) RNA and rRNA synthesized at various times during growth. Poly(A) RNA synthesized during early sporulation is preferentially degraded; in contrast, poly(A) RNA synthesized during late sporulation is conserved in the zoospore. Approximately one-third of the total zoospore poly(A) RNA accumulates during the final 15–20 min of sporulation. The accumulation rate for both poly(A) RNA and rRNA decreases as sporulation proceeds. In addition, the rate of degradation for both types of RNA decreases at later stages of sporulation.  相似文献   

7.
Two forms of poly(A) polymerase (PAPI and PAPII) from germinated wheat embryos have been resolved on DEAE-cellulose ion-exchange chromatography by a linear gradient of 0-500 mM (NH(4))(2)SO(4). Further purification shows that both forms are monomeric in nature with an identical molecular weight, approximately 65 kDa. The phosphoprotein nature of PAPI and PAPII has been established by in vivo labelling with (32)P-orthophosphate. Acid hydrolysis of both (32)P-labelled purified PAPI and PAPII has revealed that phosphorylations generally take place in serine and threonine residues. PAPI and PAPII have also been characterised with respect to V(max) and K(m) for poly(A). The V(max) and K(m) values of PAPI are 28.57 and 11.37 microg, respectively, whereas 34.48 and 7.04 microg of PAPII. In vitro dephosphorylation of the purified enzyme by alkaline phosphatase leads to a significant loss of the enzyme activity, which is regained upon phosphorylation by a 65 kDa protein kinase (PK) purified from wheat embryos. The extent of phosphorylation by protein kinase shows that PK has similar affinity towards both PAPI and PAPII, whereas the phosphate incorporation in PAPII is twofold higher than PAPI suggesting their distinct chemical nature.  相似文献   

8.
The functional regulation of integrins is a major determinant of cell adhesion, migration and tissue maintenance. The binding of cytoskeletal proteins to various sites of integrin cytoplasmic domains is a key mechanism of this functional regulation. Expression of recombinant integrin alpha(IIb)beta(3) and alpha(M)beta(2) lacking the GFFKR-region in CHO cells results in constitutively activated integrins. In contrast, CHO cells stably expressing either a GFFKR-deleted alpha(V(del))beta(3) or a FF to AA-substituted alpha(V(AA))beta(3) do not reveal a constitutively activated integrin. Adhesion to immobilized fibrinogen is strongly impaired in alpha(V(del))beta(3) or alpha(V(AA))beta(3)-expressing cells, whereas it is not impaired in alpha(IIb)beta(3) and alpha(M)beta(2), both lacking the GFFKR-region. In a parallel plate flow chamber assay, alpha(V)beta(3)-expressing cells adhere firmly to fibrinogen and spread even at shear rates of 15 to 20 dyn/cm(2), whereas alpha(V(del))beta(3) or alpha(V(AA))beta(3) cells are detached at 15 dyn/cm(2). Actin stress fiber formation and focal adhesion plaques containing alpha(V)beta(3) are observed in alpha(V)beta(3) cells but not in alpha(V(del))beta(3) or alpha(V(AA))beta(3)-expressing cells. As an additional manifestation of impaired outside-in signaling, phosphorylation of pp125(FAK) was reduced in these cells. In summary, we report that the GFFKR-region of the alpha(V)-cytoplasmic domain and in particular two phenylalanines are essential for integrin alpha(V)beta(3) function, especially for outside-in signaling. Our results suggest that the two beta(3)-integrins alpha(IIb)beta(3) and alpha(V)beta(3) are differentially regulated via their GFFKR-region.  相似文献   

9.
The poly(A)-limiting element (PLE) is a cis-acting sequence that acts to limit poly(A) tail length on pre-mRNA to <20 nt. Functional PLEs are present in a number of genes, underscoring the generality of this control mechanism. The current study sought to define further the position requirements for poly(A) length regulation and the core sequence that comprises a PLE. Increasing the spacing between the PLE and the upstream 3' splice site or between the PLE and the downstream AAUAAA had no effect on poly(A) length control. However, moving the PLE from the terminal exon to either an upstream exon or intron eliminated poly(A) length control. Poly(A) length control was further evaluated using a battery of constructs in which the PLE was maintained in the terminal exon, but where upstream introns were either deleted, modified, or replaced with a polypyrimidine tract. Poly(A) length control was retained in all cases, indicating that the key feature is the presence of the PLE in the terminal exon. A battery of mutations demonstrated the importance of the 5' pyrimidine-rich portion of the element. Finally, UV crosslinking experiments identified an approximately 62-kDa protein in Hela nuclear extract that binds to a wild-type 23-nt PLE RNA oligonucleotides but not to a mutated nonfunctional form of the element.  相似文献   

10.
A simple procedure, useful for quantitative and qualitative assays of poly(A)-containing RNA and poly(A), as well as for preparative purposes, is described. Glass-fiber filters with immobilized poly(U), a well-known technique for absorption of poly(A)-containing RNA, is combined with electrophoresis in a gel slab of agarose. In front of each of the two troughs in a gel slab, glass-fiber filters are inserted, one of which is impregnated with poly(U). Two identical RNA samples, e.g., split samples of total RNA from salivary glands of Chironomus tentans, are applied to the troughs and are moved electrophoretically across two different filters. The electrophoresis is conducted under conditions which promote the formation of duplexes between absorbed poly(U) and moving poly(A). While the passage of RNA chains across the control filter may take place essentially freely, RNA molecules that contain poly(A) hybridize with poly(U) fixed in the glass-fiber filter and become trapped there. The difference between resulting gel profiles [pattern of the total RNA minus the pattern of RNA not containing poly(A)] yields the electrophoretic distribution of poly(A)-containing RNA. In addition, poly(A)-containing RNA can be eluted from the poly(U) filter with formamide and subjected to electrophoresis without a subsequent precipitation in ethanol. No measurable quantities of ribosomal RNA or tRNA are retained on the poly(U) glass-fiber filters. The hybridization technique enables a quantitative retention of poly(A) molecules representing a wide range of chain lengths.  相似文献   

11.
12.
Summary Poly(A) RNA from S phase, G2 phase and starved macroplasmodia of Physarum contain mRNA sequences which when translated in vitro, yield similar patterns of polypeptides after fluorography.Reassociation of nick-translated DNA (Cot) allows the isolation of highly labeled single copy DNA which, after saturation hybridization with poly(A) RNA, gives values of 23% for growth and 17% for starvation.Homologous cDNA/poly(A) RNA hybridization reactions (Rot) indicate that 22–28% of the genome is transcribed during growth and 12% during starvation and that about half of the cDNA reacts with 0.1% of the genome and could represent 50–80 RNA species, each present in about 1,000 copies per nucleus. Up to 25,000 different RNA species, 1–5 copies each per nucleus, are estimated to be present during growth, and about 15,000 during starvation. Heterologous cDNA/poly(A) RNA hybridization reactions (Rot) indicate that the RNA sequences in S and G2 phase of the cell cycle are similar, with RNA sequences being more abundant in G2 phase.During starvation about 25% of the sequences present during growth cannot be detected and those sequences present during growth have become diluted during starvation.  相似文献   

13.
Summary Nuclear poly(A)+ RNA was isolated from gastrula and early tadpole stages ofXenopus laevis, transcribed into cDNA and integrated as double stranded cDNA by the G-C joining method into the Pst cleavage site of plasmid pBR 322. After cloning inE. coli strain HB 101 the clone libraries were hybridized to32P labelled cDNA derived from nuclear poly(A)+ RNA of the two different developmental stages. About 20% of the clones gave a positive hybridization signal thus representing RNA molecules of high and medium abundance. From these clones, some individual clones were identified containing sequences which are not present at the oocyte and gastrula stages but which are transcribed at the early tadpole stage of embryonic development.  相似文献   

14.
15.
The specific activity of rat poly(adenosine diphosphate ribose) glycohydrolase was higher in the testis than in the liver, brain, spleen or kidney. The enzyme was found primarily in the soluble fraction of the testis. When the soluble enzyme was chromatographed on phosphocellulose, the activity eluted in two peaks, at 0.22 and 0.34 m KCl, respectively, referred to in the present study as enzyme A and B. Enzyme A has an optimal pH of 7.25 and was stimulated by 150 mm KCl. The optimal pH of enyzme B was 6.5, but it was not stimulated by KCl. For maximal activity both enzymes required 10 mm 2-mercaptoethanol, and they were strongly inhibited by 100 μmp-chloromercuribenzoate. The Km values of enzyme A and B for poly(adenosine diphosphate ribose) were 1.52 and 0.70 μm, respectively. Ribose 5′-phosphate, guanosine 3′,5′-monophosphate, adenosine 3′,5′-monophosphate and adenosine diphosphate ribose inhibited both enzymes. The two latter nucleotides behave as noncompetitive inhibitors. Denatured DNA and the homopolypurines poly(G), poly(I) and poly(A) were very potent inhibitors of both glycohydrolases. The mode of hydrolysis of poly(adenosine diphosphate ribose) by glycohydrolases A and B was exoglycosidic, yielding adenosine diphosphate ribose as the final product.  相似文献   

16.
17.
18.
19.
The extent to which the poly(A)(+)RNA sequence complexity from sea-urchin embryos is also represented in poly(A)(-)RNA was determined by cDNA cross-hybridization. Eighty percent or more of both the cytoplasmic poly(A)(+)RNA and polysomal poly(A)(+)RNA sequences appeared in a poly(A)(-) form. In both cases, the cellular concentrations of the poly(A)(-)RNA molecules that reacted with the cDNA were similar to the concentrations of the homologous poly(A)(+) sequences. Additionally, few, if any, abundant poly(A)(+)mRNA molecules were quantitatively discriminated by polyadenylation, since the abundant poly(A)(+)sequences were also abundant in poly(A)(-)RNA. Neither degradation nor inefficient binding to oligo (dT)-cellulose can account for the observed cross-reactivity. These data indicate that, in sea-urchin embryos, the poly(A) does not regulate the utilization of mRNA by demarcating an mRNA subset that is specifically and completely polyadenylated.  相似文献   

20.
Addition of poly(A) to nuclear RNA occurs soon after RNA synthesis   总被引:9,自引:2,他引:9       下载免费PDF全文
A kinetic analysis of the appearance of [3H]uridine label in RNA sequences that neighbor poly(A), as well as the incorporation of [3H]adenosine label into both the RNA chain and the poly(A) of poly(A)-containing molecules, shows that poly(A) is added within a minute or so after RNA chain synthesis in Chinese hamster ovary cells and HeLa cells. Previous conclusions by several groups (5-7) that poly(A) might be added as long as 20-30 min after RNA synthesis appear to be in error, and the present conclusion seems much more in line with several different types of recent studies with specific mRNAs that suggest prompt poly(A) addition (13-16).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号