首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro interactions among phytic acid (PA), Cu(II) ions, and Ca(II) ions were examined as functions of PA:Cu(II):Ca(II) molar ratios and pH. Ca(II) ions competed with Cu(II) ions for binding by the soluble phytate species for PA:Cu(II) molar ratios ranging from 10:1 to 1:6 and pH values in the 2.4-5.9 range. At pH values where precipitation occurred, Ca(II) ions potentiated Cu(II) ion binding by the precipitated phytate species for PA:Cu(II) molar ratios of 10:1 to 1:3. At lower PA:Cu(II) molar ratios, Ca(II) ions competed with Cu(II) ions for binding by the precipitated phytate species. Compositions of the precipitated copper-calcium phytates are reported.  相似文献   

2.
3.
The interaction of the cupric ion with phytic acid as a function of pH has been studied by potentiometric and thermal titration and by the determination of ligand binding. As has been found for the reaction of zinc and calcium cations with phytate, the presence of the Cu(II) ion results in a displacement of the titration curves to more acid values. Evaluation of the parameters that describe such changes in ionization behavior by curve-fit analysis showed that as the Cu(II):phytate mol ratio was increased from one to eight, the pK' values of the ionizable group sets of phytic acid (ranging from 1.59 to 9.79) were consolidated into just two sets with curve-fit (CP) values ca. 1.5 and 3.7. Marked pH hysteresis effects are seen in such systems because of the pronounced acid strength of the Cu(II):aqua ion and the Cu(II) ligand aqua ion complex. The combined heat of binding and precipitation (plus solvation changes, etc.) of Cu(II) to phytate is endothermic (21.8–22.2 kcal mol−1). This is similar in magnitude to that reported for the binding of either Zn(II) or Ca(II) to phytate. In the titration of Cu(NO3)2 with KOH, presumably to form Cu(OH)2, ΔH° was exothermic (−12.5 kcal mol−1). From measurements of free Cu(II) cation concentration in the presence of phytate the binding reaction was found to be stoichiometric with 6 mols Cu(II) bound at pH 6. Binding occurs within the pH range 2–6. An apparent necessary requirement for binding is the availability of the oxo dianion structure formed from the second dissociation step of a phosphoryl group. Curve-fit analysis of the binding data as a function of pH showed that a group or group set with CP value ca. 4 governs the binding reaction(s) at all mol ratios of Cu(II) to phytate examined. It is suggested that the binding of cupric ions to phytate may occur to the equatorial rather than the axial configuration as suggested for Ca(II) binding. A space-filling molecular model to illustrate this has been constructed. Soluble Cu(II):phytate complexes are formed within the pH range from 2 to ca. 3.4. This is supported by the results of difference absorption spectrometry.  相似文献   

4.
The interaction of phytic acid with Ca(II) has been studied by potentiometric titration and by measurement of free Ca(II) concentrations using an ion Selective electrode. With increasing Ca(II) concentration, the titration curve of phytic acid is displaced to regions of lower pH. In the binding of calcium ions to phytic acid, there is no evidence that significant binding occurs below approximately pH 5. Above this pH, the extent of binding is dependent upon both pH and the calcium to phytic acid ratios. Maximum binding obtains at a Ca(II):phytate ratio of 6 with 4.8 mol of Ca(II) bound per mol of phytate above pH ca. 8. Binding constants are apparently very large since binding isotherms at any Ca(II):phytate ratio are a linear function of the total calcium ion concentration. In all cases, binding occurs only when one or more phosphate groups have been converted to the oxo dianion form. The apparent pK' values (curve-fit parameters) that describe the potentiometric titration data are in good agreement with the constants evaluated from the binding of Ca(II) to phytate as a function of pH. Using CPK space-filling models, structures containing six metal ions in coordinate linkage to pairs of oxo dianions have been constructed and discussed within the framework of the axial conformation of phytic acid and the order of proton removal with an increase in pH based upon NMR studies.  相似文献   

5.
Cd-substituted forms of the Bacillus cereus metallo-beta-lactamases (BCII) were studied by perturbed angular correlation of gamma-rays (PAC) spectroscopy. At very low [Cd]:[apo-beta-lactamase] ratios, two nuclear quadrupole interactions (NQI) were detected. For [Cd]:[apo-beta-lactamase] ratios between 0.8 and 3.0, two new NQIs appear, and the spectra show that up to 2 cadmium ions can be bound per molecule of apoenzyme. These results show the existence of two interacting Cd-binding sites in BCII. The relative populations of the two NQIs found at low [Cd]:[apo-beta-lactamase] ratios yielded a 1:3 ratio for the microscopic dissociation constants of the two different metal sites (when only one cadmium ion is bound). X-ray diffraction data at pH 7.5 demonstrate that also for Zn(II) two binding sites exist, which may be bridged by a solvent molecule. The measured NQIs could be assigned to the site with three histidines as metal ligands (three-His site) and to the site with histidine, cysteine, and aspartic acid as metal ligands (Cys site), respectively, by PAC measurements on the Cys168Ala mutant enzyme. This assignment shows that cadmium ions preferentially bind to the Cys site. This is in contrast to the preference of Zn(II) in the hybrid Zn(II)Cd(II) enzyme, where an analysis of the corresponding PAC spectrum showed that Cd(II) occupied the Cys site, whereby Zn(II) occupied the site with three histidines. The difference between Zn(II) and Cd(II) in affinity for the two sites is combined with the kinetics of hydrolysis of nitrocefin for different metal ion substitutions (Zn(2)E, ZnE, Cd(2)E, CdE, and ZnCdE) to study the function of the two metal ion binding sites.  相似文献   

6.
The binding of copper(II) and zinc(II) to oxidized glutathione   总被引:1,自引:0,他引:1  
1H and 13C NMR studies of Zn(II) binding to oxidized glutathione (GSSG) in aqueous solution over the pH range 4-11 show that it forms a complex with a 1:1 Zn:GSSG stoichiometry. At pH values between 6 and 11 the metal ligands are the COO- and NH2 groups of the glutamate residues. Below pH 5 the glycine end of the molecule also binds to the metal ions. EPR and visible absorption spectra of Cu(II) GSSG solutions suggest that similar complexes are formed with Cu(II). The solid products obtained from these solutions are shown by analysis and EPR to be primarily binuclear with Cu2GSSG stoichiometry, although the structures depend on the pH and stoichiometry of the solution from which they were obtained.  相似文献   

7.
Using an isoperibolic titration microcalorimeter, the ionization characteristics and associated heat changes of phytic acid (myo-inositol hexaphosphate) and phytic acid in the presence of varying Zn(II) concentrations have been examined over the pH range 2.5–11 at 25°C in 0.2 M KCl. In the absence of Zn(II), ca. 7 of the 12 ionizable protons in phytic acid are titrated in this pH range with ionization heats varying from ca. 2 to −3 kcal-mol-1. At Zn(II): phytate mol ratios of 4:1 and greater, the dissociation of all protons and complex formation of phytate with Zn(II) occurs below pH 6. From the difference titration curves of phytic acid plus Zn(II) versus Zn(II) alone, ca. 3.5 mol Zn(II) bind per mol phytate. Since Zn(II):phytate complexes are insoluble, the observed heat changes contain contributions not only from heats of precipitation but also from binding, ionization, neutralization, and hydration effects. From the heat change for the titration of (a) phytic acid, pH 2.6–10.4; (b) phytic acid + Zn(II), pH 2.6–6.1; and (c) Zn(II), pH 2.6–6.1 at Zn(II): phytate ratios of 4 to 10, the value of 24.7 ± 0.5 kcal mol−1 phytate has been obtained for the binding of 3.5 mols Zn(II). This figure also includes the heat of precipitation of the complex. In pH-drop experiments, with the initial pH at 8.65, the value of 23.9 kcal mol-1 was obtained for ΔH°. Hysteresis effects are prevalent in these reaction solutions. Time-dependent changes in pH occur with a change in pH. For the phytate-Zn(II) reactions, the time-course curves are biphasic and fit a rate equation for two simultaneous first order reactions. Hysteresis effects seen in the titration of Zn(II) fit simple first-order kinetics. These effects most probably arise from the ejection of a proton from the aqua ion or aqua ion ligand complex(es).  相似文献   

8.
With the aim of improving the compatibility of biomaterials to be used for the construction of cardiovascular prosthesis, we have designed bioactive macromolecules resulting from chemical modifications of hyaluronic acid (Hyal). The stability constants of Cu(II) and Zn(II) complexes with the sulphated derivative of hyaluronic acid (HyalS3.5) were evaluated. Two different complexes have been found for each metal ion, CuL, Cu(OH)2L and ZnL, Zn(OH)2L (L means the disaccharide unit of the ligands) in aqueous solution at 37 degrees C. The dihydroxo Cu(II) complex was present in high percentage at pH=7.4. On the contrary, the Zn(II) ion was present with a relatively low percentage of both complexes. The ability to stimulate endothelial cell adhesion and migration was evaluated for Hyal, HyalS3.5 and their complexes with Cu(II) and Zn(II) ions. The results revealed that Hyal and [Cu(OH)2HyalS3.5](4.5)- induced cell adhesion, while [ZnHyalS3.5](2.5)- and [Zn(OH)2HyalS3.5](4.5)- inhibited the process. The chemotactic activity of increasing concentrations of the above complexes was also evaluated, demonstrating that [Cu(OH)2HyalS3.5](4.5)- complex at 1 microM concentration was the most active in inducing cell migration. These results have been also strengthened by analysing adherent cell migration in agarose. In conclusion, sulphated hyaluronic acid coordinated to Cu(II) seems to be a promising matrix molecule for the construction of cardiovascular prosthesis.  相似文献   

9.
The binary and ternary systems 2,2'-bipyridine (bpy)-M(II)-NO2psglyH2 (M(II) = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II); NO2psglyH2 = N-(2-nitrophenylsulfonyl)glycine) were investigated in aqueous solution by means of potentiometry and electron spectroscopy in order to identify the type, number and stability of the complex species as a function of pH and metal-to-ligand molar ratio. The aim is to evaluate the effect of a substituent on the phenyl ring of the N-sulfonyl amino acids on their coordination properties. The prevailing species in the binary systems is the [ML] (M = Co(II), Ni(II), Cu(II), Cd(II), Pb(II)) where the amino acid molecule is in the dianionic form and coordinates the metal ion through both carboxylic oxygen and deprotonated sulfonamidic nitrogen, while in the Mn(II)- and Zn(II)-containing binary system the only complex species found are those with the amino acid in the monoanionic form. In the ternary 2,2'-bipyridine-containing systems the chelating coordination mode of the dianionic amino acid is maintained with M(II) = Co(II), Ni(II), Cu(II), Cd(II), Pb(II) and the addition of the aromatic base also enables the Zn(II) ion to substitute for the sulfonamide nitrogen-bound hydrogen of NO2psglyH2.  相似文献   

10.
The reaction of L-ascorbic acid with the zinc group and manganese ions has been investigated in aqueous solution at pH 6-7. The solid salts of the type M (L-ascorbate)2.2H2O, where M = Zn(II), Cd(II) and Mn(II) were isolated and characterized by 13C NMR and Fourier Transform infrared (FT-IR) spectroscopy. Spectroscopic evidence showed that in aqueous solution, the bindings of the Zn(II) and Mn(II) ions are through the ascorbate anion O-3 and O(2)-H groups (chelation), while the Cd(II) ion binding is via the O-3 atom only. In the solid state, the binding of these metal ions would be through two acid anions via O-3, O-2 of the first and O-1, O-3 of the second anion as well as to two H2O molecules, resulting in a six-coordinated metal ion. The Hg(II) ion interaction leads to the oxidation of the ascorbic acid in aqueous solution.  相似文献   

11.
Methods have been developed for the addition of different metal ion species to the three distinct pairs of metal sites (A, B, and C) found in the dimer of apoalkaline phosphatase. This allows the preparation of hybrid alkaline phosphatases in which A and B sites of each monomer contain two different species of metal ion or the A and B sites of one monomer contain the same species of metal ion, while the adjacent monomer contains a second species. The following hybrids have been characterized in detail: (Zn(II)ACd(II)B)2 alkaline phosphatase, (Zn(II)AMg(II)B)2 alkaline phosphatase, (Cd(II)AZn(II)B)2 alkaline phosphatase, and (Zn(II)AZn(II]B)(Cd(II)ACd(II)B) alkaline phosphatase. 31P and, where appropriate, 113Cd NMR have been used to monitor the behavior of the covalent (E-P) and noncovalent (E X P) phosphointermediates and of the A and B metal ions. From the pH dependencies of the E-P in equilibrium E X P in equilibrium E + Pi equilibria, it is clear that A site metal is the dominant influence in dephosphorylation of E-P and may have a coordinated water molecule, which ionizes to ZnOH- at a low pH providing the nucleophile for dephosphorylation. A site metal also serves to coordinate phosphate in the E X P complex. B site metal has a much smaller effect on dephosphorylation rates, although it does dramatically alter the Pi dissociation rate, which is the rate-limiting step for the native enzyme at alkaline pH, and is probably important in neutralizing the charge on the phosphoseryl residue, thus potentiating the nucleophilic attack of the OH- bound at A site. Phosphate dissociation is slowed markedly by replacement of B site zinc by cadmium. There is clear evidence for long range effects of subunit-subunit interactions, since metal ion and phosphate binding at one active center alters the environments of A and B site metal ions and phosphoserine at the other active site.  相似文献   

12.
Tamarind fruit shell (TFS) was converted to a cation exchanger (PGTFS-SP-COOH) having a carboxylate functional group at the chain end by grafting poly(hydroxyethylmethacrylate) onto TFS (a lignocellulosic residue) using potassium peroxydisulfate-sodium thiosulfate redox initiator, and in the presence of N, N ′-methylenebisacrylamide as a cross-linking agent, followed by functionalization. The chemical modification was investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and potentiometric titrations. The feasibility of PGTFS-SP-COOH for the removal of heavy metals such as U(VI), Cu(II), Zn(II), and Co(II) ions from aqueous solutions was investigated by batch process. The optimum pH range for the removal of meal ions was found to be 6.0. For all the metal ions, equilibrium was attained within 2 h. The kinetic and isotherm data, obtained at optimum pH value 6.0, could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. The Sips maximum adsorption capacity for U(VI), Cu(II), Zn(II), and Co(II) ions at 30°C was found to be 100.79, 65.69, 65.97, and 58. 81 mg/g, respectively. Increase of ionic strength decreased the metal ion adsorption. Different wastewater samples were treated with PGTFS-SP-COOH to demonstrate its efficiency in removing metal ions from wastewater. The adsorbed metal ions on PGTFS-SP-COOH can be recovered by treating with 1.0 M NaCl + 0.5 M HCl for U(VI) ions and 0.2 M HCl for Cu(II), Co(II), and Zn(II) ions. Four adsorption/desorption cycles were performed without significant decrease in removal capacity. The results showed that PGTFS-SP-COOH developed in this study exhibited considerable adsorption potential for the removal of U(VI), Cu(II), Zn(II), and Co(II) ions from water and wastewaters.  相似文献   

13.
The potential use of the immobilized fresh water algae (in Ca-alginate) of Scenedesmus quadricauda to remove Cu(II), Zn(II) and Ni(II) ions from aqueous solutions was evaluated using Ca-alginate beads as a control system. Ca-alginate beads containing immobilized algae were incubated for the uniform growth at 22 degrees C for 5d ays. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae showed highest values at around pH 5.0. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae increased as the initial concentration of metal ions increased in the medium. The maximum adsorption capacities of the immobilized algal biosorbents for Cu(II), Zn(II) and Ni(II) were 75.6, 55.2 and 30.4 mg/g (or 1.155, 0.933 and 0.465 mmol/g) biosorbent, respectively. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.84 mol/g for Cu(II), 0.59 mol/g for Ni(II) and 0.08 mol/g for Zn(II), the immobilised algal biomass was significantly selective for Cu(II) ions. The adsorption-equilibrium was also represented with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae followed second-order kinetic.  相似文献   

14.
High-performance immobilized metal ion affinity chromatography was utilized to evaluate the adsorption properties of 67 synthetic, biologically active, peptides ranging in size from 5 to 42 residues. The metal ions, Cu(II), Ni(II) and Zn(II), were immobilized by iminodiacetic acid (IDA) coupled to TSK gel 5PW (10 microns). Two types of gradient elution (imidazole and pH) were used to evaluate peptide retention by the metal ions. A decreasing pH gradient and an increasing imidazole gradient eluted the peptides in similar order. IDA-Cu(II) and IDA-Zn(II) showed very similar selectivities for the peptides analyzed; however, IDA-Zn(II) displayed a weaker affinity for the peptides. IDA-Ni(II) showed a slightly different pattern of selectivity. Peptide adsorption effects contributed by the metal-free gel matrix were found to be relatively minor. The concentration and type of salt included in the mobile phase could affect the relative affinities of the peptides for the immobilized metal ions. Retention coefficients were assigned to individual amino acid residues by multiple linear regression analysis. Histidine showed the largest positive correlation with retention, followed by aromatic amino acid residues. Modified N-terminal residues resulted in negative contributions to retention. Analyses of peptide amino acid composition alone allowed prediction of peptide retention behavior on immobilized metal ion affinity columns.  相似文献   

15.
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.  相似文献   

16.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

17.
Kefzol (kzl), a beta-lactam antibiotic, possesses various donor sites for interaction with transition metal(II) ions [Co(II), Cu(II), Ni(II) and Zn(II)] to form complexes of the type [M(kzl)2]Cl2 and [M(kzl)Cl], with molar ratio of metal: ligand (M:L) of 1:2 and 1:1 respectively. These complexes were prepared and characterized by physicochemical and spectroscopic methods. Their IR and NMR spectra suggest that kefzol potentially acts as a bidentate, tridentate as well as monoanionic tetradentate ligand. The complexes have been screened for antibacterial activity and results were compared with the activity of the uncomplexed antibiotic against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Proteus mirabilis. The metal complexes were found to be more potent against one or more bacterial species than the uncomplexed kefzol.  相似文献   

18.
Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.  相似文献   

19.
Detailed investigations of a serum peptide (less than Glu1-Ala2-Lys3-Ser4-Gln5-Gly6-Gly7-Ser8-++ +Asn9) were carried out by 1H and 13C NMR spectroscopy to elucidate the structure of the complex formed with Zn(II), thymulin, which has been found to be active in vivo. These experiments were performed in dimethyl sulfoxide-d6 solution at different metal:peptide ratios. The results suggest the following conclusions. (i) The Zn(II) complexation corresponds to a fast exchange on the NMR time scale. (ii) The evolution of 1H and 13C NMR chemical shifts indicates the existence of two types of complexes: a 1:2 species associating two peptide molecules and one Zn(II) ion and a complex with 1:1 stoichiometry. The former is predominant for metal:peptide ratios below unity. (iii) In the 1:2 complex, Zn(II) is coordinated by the Ser4-O gamma H and Asn9-CO2- sites, while in the 1:1 complex, Ser8-O gamma H is the third ligand to the Zn(II) ion. The results are compared with those for the [Ala4] and [Ala8] analogues, and those for the complexes of thymulin with other metal ions (Cu2+ and Al3+) in terms of its biological activity. These comparative studies suggested that the 1:1 complex is the only conformation recognized by the antibodies.  相似文献   

20.
The present study reports the development of a new 1,8‐naphthalimide‐based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52–9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO–HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence ‘turn off’ mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 106 M–1 and 4.67 × 10–8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号