共查询到20条相似文献,搜索用时 7 毫秒
1.
Qiujie Wang Cheng Bin Qiang Xue Qingzhu Gao Ailong Huang Kai Wang Ni Tang 《Cell death & disease》2021,12(5)
Increasing evidence supports that ferroptosis plays an important role in tumor growth inhibition. Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, has been shown to induce ferroptosis in hepatocellular carcinoma (HCC). However, some hepatoma cell lines are less sensitive to sorafenib-induced ferroptotic cell death. Glutathione S-transferase zeta 1 (GSTZ1), an enzyme in the catabolism of phenylalanine, suppresses the expression of the master regulator of cellular redox homeostasis nuclear factor erythroid 2-related factor 2 (NRF2). This study aimed to investigate the role and underlying molecular mechanisms of GSTZ1 in sorafenib-induced ferroptosis in HCC. GSTZ1 was significantly downregulated in sorafenib-resistant hepatoma cells. Mechanistically, GSTZ1 depletion enhanced the activation of the NRF2 pathway and increased the glutathione peroxidase 4 (GPX4) level, thereby suppressing sorafenib-induced ferroptosis. The combination of sorafenib and RSL3, a GPX4 inhibitor, significantly inhibited GSTZ1-deficient cell viability and promoted ferroptosis and increased ectopic iron and lipid peroxides. In vivo, the combination of sorafenib and RSL3 had a synergic therapeutic effect on HCC progression in Gstz1−/− mice. In conclusion, this finding demonstrates that GSTZ1 enhanced sorafenib-induced ferroptosis by inhibiting the NRF2/GPX4 axis in HCC cells. Combination therapy of sorafenib and GPX4 inhibitor RSL3 may be a promising strategy in HCC treatment.Subject terms: Cancer therapeutic resistance, Cancer therapeutic resistance 相似文献
2.
Metformin is a widely prescribed hypoglycemic drug.Many studies have shown its anti-cancer properties.In the present study,we aimed to explore the effect of met... 相似文献
3.
ABSTRACT
Ferroptosis is a recently discovered form of programmed cell death, but its regulatory mechanisms remain poorly understood. Here, we show that the RNA-binding protein ZFP36/TTP (ZFP36 ring finger protein) plays a crucial role in regulating ferroptosis in hepatic stellate cells (HSCs). Upon exposure to ferroptosis-inducing compounds, the ubiquitin ligase FBXW7/CDC4 (F-box and WD repeat domain containing 7) decreased ZFP36 protein expression by recognizing SFSGLPS motif. FBXW7 plasmid contributed to classical ferroptotic events, whereas ZFP36 plasmid impaired FBXW7 plasmid-induced HSC ferroptosis. Interestingly, ZFP36 plasmid inhibited macroautophagy/autophagy activation by destabilizing ATG16L1 (autophagy related 16 like 1) mRNA. ATG16L1 plasmid eliminated the inhibitory action of ZFP36 plasmid on ferroptosis, and FBXW7 plasmid enhanced the effect of ATG16L1 plasmid on autophagy. Importantly, ZFP36 plasmid promoted ATG16L1 mRNA decay via binding to the AU-rich elements (AREs) within the 3?-untranslated region. The internal mutation of the ARE region abrogated the ZFP36-mediated ATG16L1 mRNA instability, and prevented ZFP36 plasmid-mediated ferroptosis resistance. In mice, treatment with erastin and sorafenib alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific overexpression of Zfp36 impaired erastin- or sorafenib-induced HSC ferroptosis. Noteworthy, we analyzed the effect of sorafenib on HSC ferroptosis in fibrotic patients with hepatocellular carcinoma receiving sorafenib monotherapy. Attractively, sorafenib monotherapy led to ZFP36 downregulation, ferritinophagy activation, and ferroptosis induction in human HSCs. Overall, these results revealed novel molecular mechanisms and signaling pathways of ferroptosis, and also identified ZFP36-autophagy-dependent ferroptosis as a potential target for the treatment of liver fibrosis. 相似文献
4.
5.
《Phytomedicine》2020
BackgroundLiquiritigenin (LQ), an aglycone of liquiritin in licorice, has demonstrated antioxidant, anti-inflammatory and anti-tumor activities. Previously, LQ was found to inhibit liver fibrosis progression.PurposePhosphatase and tensin homolog (PTEN) has been reported to act as a negative regulator of hepatic stellate cell (HSC) activation. However, the roles of PTEN in the effects of LQ on liver fibrosis have not been identified to date.MethodsThe effects of LQ on liver fibrosis in carbon tetrachloride (CCl4) mice as well as primary HSCs were examined. Moreover, the roles of PTEN and microRNA-181b (miR-181b) in the effects of LQ on liver fibrosis were examined.ResultsLQ markedly ameliorated CCl4-induced liver fibrosis, with a reduction in collagen deposition as well as α-SMA level. Moreover, LQ induced an increase in PTEN and effectively inhibited HSC activation including cell proliferation, α-SMA and collagen expression, which was similar with curcumin (a positive control). Notably, loss of PTEN blocked down the effects of LQ on HSC activation. PTEN was confirmed as a target of miR-181b and miR-181b-mediated PTEN was involved in the effects of LQ on liver fibrosis. LQ led to a significant reduction in miR-181b expression. LQ-inhibited HSC activation could be restored by over-expression of miR-181b. Further studies demonstrated that LQ down-regulated miR-181b level via Sp1. Collectively, we demonstrate that LQ inhibits liver fibrosis, at least in part, via regulation of miR-181b and PTEN.ConclusionLQ down-regulates miR-181b level, leading to the restoration of PTEN expression, which contributes to the suppression of HSC activation. LQ may be a potential candidate drug against liver fibrosis. 相似文献
6.
7.
Kato I Niwa A Heike T Fujino H Saito MK Umeda K Hiramatsu H Ito M Morita M Nishinaka Y Adachi S Ishikawa F Nakahata T 《PloS one》2011,6(11):e27042
In acute lymphoblastic leukemia (ALL) patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null) mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis. 相似文献
8.
9.
Shazhou Ye Mingjun Xu Tingwei Zhu Jiayi Chen Shanping Shi Haizhong Jiang Qingfang Zheng Qi Liao Xiaoyun Ding Yang Xi 《Journal of cellular and molecular medicine》2021,25(7):3300-3311
Ferroptosis is an iron-dependent mode of non-apoptotic cell death characterized by accumulation of lipid reactive oxygen species (ROS). As a regulator of ROS, cytoglobin (CYGB) plays an important role in oxygen homeostasis and acts as a tumour suppressor. However, the mechanism by which CYGB regulates cell death is largely unknown. Here, we show that CYGB overexpression increased ROS accumulation and disrupted mitochondrial function as determined by the oxygen consumption rate and membrane potential. Importantly, ferroptotic features with accumulated lipid ROS and malondialdehyde were observed in CYGB-overexpressing colorectal cancer cells. Moreover, CYGB significantly increased the sensitivity of cancer cells to RSL3- and erastin-induced ferroptotic cell death. Mechanically, both YAP1 and p53 were significantly increased based on the RNA sequencing. The knock-down of YAP1 alleviated production of lipid ROS and sensitivity to ferroptosis in CYGB overexpressed cells. Furthermore, YAP1 was identified to be inhibited by p53 knock-down. Finally, high expression level of CYGB had the close correlation with key genes YAP1 and ACSL4 in ferroptosis pathway in colon cancer based on analysis from TCGA data. Collectively, our results demonstrated a novel tumour suppressor role of CYGB through p53-YAP1 axis in regulating ferroptosis and suggested a potential therapeutic approach for colon cancer. 相似文献
10.
11.
Zong Miao Wei Tian Yangfan Ye Wei Gu Zhongyuan Bao Lei Xu Guangchi Sun Chong Li Yiming Tu Honglu Chao Sin Man Lam Ning Liu Jing Ji 《Cell death & disease》2022,13(6)
Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by the iron-dependent lipid reactive oxygen species (ROS) accumulation, but its mechanism in gliomas remains elusive. Acyl–coenzyme A (CoA) synthetase long-chain family member 4 (Acsl4), a pivotal enzyme in the regulation of lipid biosynthesis, benefits the initiation of ferroptosis, but its role in gliomas needs further clarification. Erastin, a classic inducer of ferroptosis, has recently been found to regulate lipid peroxidation by regulating Acsl4 other than glutathione peroxidase 4 (GPX4) in ferroptosis. In this study, we demonstrated that heat shock protein 90 (Hsp90) and dynamin-related protein 1 (Drp1) actively regulated and stabilized Acsl4 expression in erastin-induced ferroptosis in gliomas. Hsp90 overexpression and calcineurin (CN)–mediated Drp1 dephosphorylation at serine 637 (Ser637) promoted ferroptosis by altering mitochondrial morphology and increasing Acsl4-mediated lipid peroxidation. Importantly, promotion of the Hsp90–Acsl4 pathway augmented anticancer activity of erastin in vitro and in vivo. Our discovery reveals a novel and efficient approach to ferroptosis-mediated glioma therapy. Subject terms: Drug development, Drug discovery 相似文献
12.
13.
14.
Soeda J Morgan M McKee C Mouralidarane A Lin C Roskams T Oben JA 《Biochemical and biophysical research communications》2012,417(1):17-22
Background and aimsCigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH).MethodshHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH).ResultshHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers.ConclusionNicotine at levels in smokers’ blood is pro-fibrogenic, through actions on hHSCs expressed nAChRs. Therefore, CS, via its nicotine content, may worsen liver fibrosis. Moreover, nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. 相似文献
15.
Shu-Chung Hsieh Chi-Hao Wu Chun-Chi Wu Jung-Hsing Yen Mei-Chun Liu Chi-Mei Hsueh Shih-Lan Hsu 《Life sciences》2014
Aims
The activation of hepatic stellate cells (HSCs) in response to liver injury is critical to the development of liver fibrosis, thus, the blockage of the activation of HSCs is considered as a rational approach for anti-fibrotic treatment. In this report, we investigated the effects and the underlying mechanisms of gallic acid (GA) in interfering with the activation of HSCs.Main methods
The primary cultured rat HSCs were treated with various doses of GA for different time intervals. The morphology, viability, caspase activity, calcium ion flux, calpain I activity, reactive oxygen species generation and lysosomal functions were then investigated.Key findings
GA selectively killed HSCs in both dose- and time-dependent manners, while remained no harm to hepatocytes. Besides, caspases were not involved in GA-induced cell death of HSCs. Further results showed that GA toxicity was associated with a rapid burst of reactive oxygen species (ROS) and a subsequent increase of intracellular Ca2 + and calpain activity. Addition of calpain I but not calpain II inhibitor rescued HSCs from GA-induced death. In parallel, pretreatment with antioxidants or an intracellular Ca2 + chelator eradicated GA responses, implying that GA-mediated cytotoxicity was dependent on its pro-oxidative properties and its effect on Ca2 + flux. Furthermore, application of ROS scavengers also reversed Ca2 + release and the disruption of lysosomal membranes in GA-treated HSCs.Significance
These results provide evidence for the first time that GA causes selective HSC death through a Ca2 +/calpain I-mediated necrosis cascade, suggesting that GA may represent a potential therapeutic agent to combat liver fibrosis. 相似文献16.
Siyu Yuan Can Wei Guofang Liu Lijun Zhang Jiahao Li Lingling Li Shiyi Cai Ling Fang 《Cell proliferation》2022,55(1)
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis. 相似文献
17.
18.
Faisal Thayyullathil Anees Rahman Cheratta Ameer Alakkal Karthikeyan Subburayan Siraj Pallichankandy Yusuf A. Hannun Sehamuddin Galadari 《Cell death & disease》2021,12(1)
Ferroptosis is a type of regulated cell death characterized by ROS accumulation and devastating lipid peroxidation (LPO). The role of acid sphingomyelinase (ASM), a key enzyme in sphingolipid metabolism, in the induction of apoptosis has been studied; however, to date its role in ferroptosis is unclear. In this study, we report that ASM plays a hitherto unanticipated role in promoting ferroptosis. Mechanistically, Erastin (Era) treatment results in the activation of ASM and generation of ceramide, which are required for the Era-induced reactive oxygen species (ROS) generation and LPO. Inhibition of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) or removal of intracellular ROS, significantly reduced Era-induced ASM activation, suggesting that NADPH oxidase-derived ROS regulated ASM-initiated redox signaling in a positive feedback manner. Moreover, ASM-mediated activation of autophagy plays a critical role in ferroptosis inducers (FINs)-induced glutathione peroxidase 4 (GPX4) degradation and ferroptosis activation. Genetic or pharmacological inhibition of ASM diminishes Era-induced features of autophagy, GPX4 degradation, LPO, and subsequent ferroptosis. Importantly, genetic activation of ASM increases ferroptosis in cancer cells induced by various FINs. Collectively, these findings reveal that ASM plays a novel role in ferroptosis that could be exploited to improve pathological conditions that link to ferroptosis.Subject terms: Lipid peroxides, Cancer models, Macroautophagy, Lipid signalling 相似文献
19.
Yu Fujun Dong Buyuan Dong Peihong He Yanghuan Zheng Jianjian Xu Ping 《Molecular and cellular biochemistry》2020,463(1-2):115-126
Molecular and Cellular Biochemistry - Shrm4 is a protein that is exclusively expressed in polarized tissues. The physiological function of Shrm4 in the brain was required to be elucidated. Thus, we... 相似文献