首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Experimental mycology》1992,16(2):102-109
Dipeptidyl peptidase III was purified from culminating cells ofDictyostelium discoideum to apparent homogeneity by salt fractionation, isoelectric focusing, hydrophobic interaction, gel filtration, and ion-exchange chromatography. The enzyme was also found in and purified from cells growing on bacteria or in axenic media. The enzyme from the growth phase was indistinguishable from the culmination enzyme during all purification procedures. Thus dipeptidyl peptidase III is not a developmentally associated enzyme and probably is involved in peptide breakdown throughout the life cycle. The enzyme cleaved arginyl-arginyl-2-naphthylamide most effectively and showed no action on leucyl-glycyl-naphthylamide, thus resembling the mammalian enzyme and differing from the yeast enzyme. Aspartyl-arginyl-naphthylamide was cleaved at 6% of the rate observed with arginyl-arginyl-naphthylamide and the enzymein vivo might therefore be capable of removing the N-terminal peptide (aspartyl-arginine) from peptides such as angiotensins I and II. It showed no aminopeptidase or endopeptidase activity. Angiotensin III was an effective inhibitor of the enzyme; peptides with the N-terminal sequences Gly-Gly, Gly-Arg, Arg-Val, and Gly-His inhibited the enzyme weakly.  相似文献   

2.
An arylamidase was purified from Flavobacterium meningosepticum by a series of chromatographies on CM-cellulose, DEAE-Sephadex A-50 and Sephadex G-150. The purified enzyme appeared homogeneous on SDS-gel electrophoresis. The molecular weight of the enzyme was estimated to be more than 500,000 dalton by using a column of Sepharose 4B and to be 62,000 when checked by SDS-gel electrophoresis. The enzyme was most active at pH 7.5 toward Leu-β-naphthylamide (Leu-β-NA). It catalyzed the hydrolysis of not only various amino acid-β-naphthylamides but also some peptides, but the hydrolysis rate of the latter substrates was quite low. Cys-di-β-naphthylamide was split by this enzyme at an optimal pH of 6.2. Incubation of oxytocin with the enzyme resulted in a decrease in the biological activity, indicating that this arylamidase possesses an oxytocinase (cystyl aminopeptidase)-like activity.  相似文献   

3.
We have synthesized several new chromogenic substrates, p-nitroanilides of the dipeptides, Gly-Pro, Ala-Pro, Lys-Pro, Arg-Pro, Glu-Pro, and Asp-Pro, for X-prolyl dipeptidyl-aminopeptidase. These have permitted the development of a simple assay of the enzyme in which p-nitroaniline liberated directly or after the Bratton-Marshall reaction is measured spectrophotometrically. The enzyme activity was measured in human serum or in homogeneous enzyme purified from human submaxillary gland. The homogeneous enzyme hydrolyzed each substrate to produce X-Pro and p-nitroaniline. The optimum pH was at 8.7, except with Arg-Pro p-nitroanilide (8.0). Serum enzyme hydrolyzed Gly-Pro p-nitroanilide to p-nitroaniline and Gly-Pro, which was further hydrolyzed to Gly and Pro by an imidodipeptidase in serum. Gly-Pro β-naphthylamide or Gly-Pro-Leu was a competitive inhibitor with each X-Pro p-nitroanilide as substrate. Gly-Pro p-nitroanilide had the highest activity among the substrates at pH 8.7, followed by p-nitroanilides of Ala, Lys, Arg, Glu, and Asp in a decreasing order of activity.  相似文献   

4.
An aminopeptidase from Aspergillus oryzae 460 was purified from the rivanol precipitable fraction. The partially purified enzyme was not homogeneous in disc electrophoresis, although symmetric profiles were obtained for enzyme protein and activity in Sephadex gel filtration. Its optimum pH is at pH 8.5 for l-leucyl-β-naphthylamide. The enzyme activity was inhibited by metal chelating agents and S-S dissociating agents, but not inhibited by SH reagents. The molecular weight of the enzyme was estimated to be about 26,500 by gel filtration. The enzyme was named leucine aminopeptidase I of Asp. oryzae 460, since it preferentially hydrolyzed oligopeptides that possess leucine as the amino terminal amino acid.  相似文献   

5.
Post-proline endopeptidase (PPE, EC 3.4.21.26) was purified 3,450 times from human lung. PPE was routinely assayed with the artificial substrate, carbobenzoxy-glycyl-L-prolyl-p-nitroanilide (Z-Gly-Pro-pNA). The pH optimum was 7.4, and the Mr was 77,000. Thiol blocking agents were strongly inhibitory but serine blocking agents were not inhibitory. No metal ions were required for activity, but heavy metal ions such as Hg2+, Cu2+, Cd2+, and Zn2+ completely inactivated the enzyme. Both dithiothreitol (DTT) and ethylenediaminetetraacetic acid (EDTA) were required to stabilize PPE activity. Michaelis constant values for Z-Gly-Pro-pNA and carbobenzoxy-glycyl-L-prolyl-2-naphthylamide were 0.36 and 0.10 mmol/l, respectively. PPE cleaved vasoactive peptides including bradykinin (BK) and des-(Arg9)-BK (Pro3-Gly4 and Pro7-Phe8 bonds), angiotensins I and II (Pro7-Phe8 bond), substance P (Pro4-Gln5 bond), and oxytocin (Pro7-Leu8 bond). Each of these peptides inhibited PPE-catalyzed hydrolysis of Z-Gly-Pro-pNA competitively. BK had the lowest Ki value (2.35 mumol/l) and oxytocin had the highest Ki value (84.0 mumol/l). PPE was not inhibited by captopril, a potent inhibitor of angiotensin converting enzyme, which also cleaves the Pro7-Phe8 bond of BK.  相似文献   

6.
The kinetic properties and substrate specificities of dipeptidyl-aminopeptidase IV (EC 3.4.14.—) detergent-solubilized and purified from the brush border membrane of rat small intestinal mucosal cells were investigated. Kinetic analysis of purified dipeptidyl-aminopeptidase IV was carried out with a variety of oligopeptides and β-napthylamide derivatives as substrates. In general, peptides with proline penultimate to the amino terminus (XPro, X= amino acid) are more favored substrates while those with alanine (XAla) are hydrolyzed at a slower rate. There is some activity toward substrates having leucine at both the penultimate position and amino terminus (LeuLeu). The activity of the purified enzyme toward GlylProβ-napthylamide derivative is maximal at pH 8.4 in Tris-HCl buffer, with an activation energy of 7.98 kcal/mol. There is no requirement for metal ion. The ability of various dipeptides to inhibit Gly-l-Pro-β-napthylamide derivative hydrolysis was used to determine the binding specificity of the enzyme for the amino-terminal amino acid. These data show that a free amino acid group is necessary for enzymatic activity and increased hydrophobicity of the amino acid at the amino terminus enhances binding.  相似文献   

7.
Triacylglycerol (TAG), the common energy storage molecule, is formed from diacylglycerol and a coenzyme A-activated fatty acid by the action of an acyl coenzyme A:diacylglycerol acyltransferase (DGAT). In order to conduct this step, most organisms rely on more than one enzyme. The two main candidates in Dictyostelium discoideum are Dgat1 and Dgat2. We show, by creating single and double knockout mutants, that the endoplasmic reticulum (ER)-localized Dgat1 enzyme provides the predominant activity, whereas the lipid droplet constituent Dgat2 contributes less activity. This situation may be opposite from what is seen in mammalian cells. Dictyostelium Dgat2 is specialized for the synthesis of TAG, as is the mammalian enzyme. In contrast, mammalian DGAT1 is more promiscuous regarding its substrates, producing diacylglycerol, retinyl esters, and waxes in addition to TAG. The Dictyostelium Dgat1, however, produces TAG, wax esters, and, most interestingly, also neutral ether lipids, which represent a significant constituent of lipid droplets. Ether lipids had also been found in mammalian lipid droplets, but the role of DGAT1 in their synthesis was unknown. The ability to form TAG through either Dgat1 or Dgat2 activity is essential for Dictyostelium to grow on bacteria, its natural food substrate.  相似文献   

8.
An enkaphalin-degrading aminopeptidase using Leu-enkephalin as a substrate was purified about 4100-fold from guinea pig serum. The purified preparation was apparently homogenous, showing on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was approx. 92 000. The amino-peptidase had a pH optimum of 7.0 with Km values of 0.12 mM and 0.18 mM for Leu- and Met-enkephalin, respectively. The enzyme hydrolyzed neutral, basic and aromatic amino acid β-naphthylamides, but did not the acidic one. The enzyme was inhibited strongly by metal-chelating agents, bestatin and amastatin and weakly by puromycin. Among several biologically active peptides, angiotensin III and substance P strongly inhibited the enzyme.  相似文献   

9.
An increase in cell size and protein content was observed when quiescent arterial smooth muscle cells in culture were incubated with either angiotensin II or III. These effects were inhibited by the specific angiotensin type-1 receptor antagonist losartan (DuP753) but not by CGP42112A. In parallel, a transient and dose-dependent induction of c-fos was demonstrated not only with angiotensins II and III but also with angiotensin I. Both angiotensins II and III exerted their maximal effect at 1 microM, while angiotensin I needed a tenfold-higher concentration to exert an identical effect. As for hypertrophy, losartan also inhibits angiotensin-induced c-fos expression, suggesting that this gene may be involved into the hypertrophic process. Angiotensin-I-mediated c-fos induction is partially inhibited by the angiotensin-converting enzyme inhibitors captopril and trandolaprilate; given that an angiotensin-converting enzyme activity was detected in these smooth muscle cell cultures, these results suggest that angiotensin-I-induced c-fos expression is mediated in part via angiotensin-I conversion to angiotensin II, but also by other unidentified pathway(s). Angiotensin I could essentially induce smooth muscle cell hypertrophy by indirect mechanisms, while angiotensins II and III act directly on smooth muscle cells.  相似文献   

10.
Dictyostelium discoideum possesses more EGF-like (EGFL) domains than any other sequenced eukaryote. Here we show that a synthetic EGFL peptide (DdEGFL1) based upon an amino acid sequence from a cysteine-rich Dictyostelium protein, functions extracellularly to enhance random cell motility and cAMP-mediated chemotaxis in Dictyostelium by 625% and 85%, respectively, in strain NC4 and by 620% and 80% in strain AX3. Quinacrine inhibited peptide-enhanced random motility but not chemotaxis in strain AX3 providing evidence that PLA2 is the predominant regulator of this process. While LY294002 alone had no significant effect on either event, in combination with quinacrine it dramatically inhibited both processes suggesting that both PI3K and PLA2-mediated signaling are required for EGFL peptide-enhanced cell movement. DdEGFL1 also sustained the threonine phosphorylation of a 210kDa protein that is dephosphorylated during Dictyostelium starvation. Taken together, these results suggest an important role for certain EGFL peptides in Dictyostelium cell movement.  相似文献   

11.
The present study was designed to investigate the anticancer activity of novel nine small peptides (compounds 19) derived from TT-232, a somatostatin structural analogue, by analyzing the inhibition of mammalian DNA polymerase (pol) and human cancer cell growth. Among the compounds tested, compounds 3 [tert-butyloxycarbonyl (Boc)-Tyr-Phe-1-naphthylamide], 4 (Boc-Tyr-Ile-1-naphthylamide), 5 (Boc-Tyr-Leu-1-naphthylamide) and 6 (Boc-Tyr-Val-1-naphthylamide) containing tyrosine (Tyr) but no carboxyl groups, selectively inhibited the activity of rat pol β, which is a DNA repair-related pol. Compounds 36 strongly inhibited the growth of human colon carcinoma HCT116 p53+/+ cells. The influence of compounds 19 on HCT116 p53?/? cell growth was similar to that observed for HCT116 p53+/+ cells. These results suggest that the cancer cell growth suppression induced by these compounds might be related to their inhibition of pol. Compound 4 was the strongest inhibitor of pol β and cancer cell growth among the nine compounds tested. This compound specifically inhibited rat pol β activity, but had no effect on the other 10 mammalian pols investigated. Compound 4 combined with methyl methane sulfonate (MMS) treatment synergistically suppressed HCT116 p53?/? cell growth compared with MMS alone. This compound also induced apoptosis in HCT116 cells with or without p53. From these results, the influence of compound 4, a specific pol β inhibitor, on the relationship between DNA repair and cancer cell growth is discussed.  相似文献   

12.
Endo-β-1,4-glucanase encoded byBacillus subtilis JA18 was expressed inEscherichia coli. The recombinant enzyme was purified and characterized. The purified enzyme showed a single band of 50 kDa by SDS-PAGE. The optimum pH and temperature for this endo-β-1,4-glucanase was pH 5.8 and 60 °C. The endo-β-1,4-glucanase was highly stable in a wide pH range, from 4.0 to 12.0. Furthermore, it remained stable up to 60 °C. The endo-β-1,4-glucanase was completely inhibited by 2 mM Zn2+, Cu2+, Fe3+, Ag+, whereas it is activated in the presence of Co2+. In addition, the enzyme activity was inhibited by 1 mM Mn2+ but stimulated by 10 mM Mn2+. At 1% concentration, SDS completely inhibited the enzyme. The enzyme hydrolysed carboxymethylcellulose, lichenan but no activity was detected with regard to avicel, xylan, chitosan and laminarin. For carboxymethylcellulose, the enzyme had a Km of 14.7 mg/ml.  相似文献   

13.
The substrate specificities of four Cl?-activated arginine aminopeptidases purified from the livers and inflammatory exudates of the rat, human fetal livers, and human erythrocytes were studied using peptides and N-l-aminoacyl-2-naphthylamides as substrates. With 2-naphthylamide substrates, these aminopeptidases showed similar substrate specificity; only the derivatives of Arg and Lys were measurably hydrolyzed. Di- and tripeptides with Arg or Lys as the N-terminal residue were readily split by the enzymes from the livers and inflammatory exudates of the rat and human fetal livers but oligopeptides were not hydrolyzed. Arg- and Lys-peptides were also hydrolyzed by the erythrocyte enzyme but this enzyme additionally split several other peptides, oligopeptides being hydrolyzed at internal bonds. The following properties were similar for all four arginine aminopeptidases: Dipeptides were preferred over tripeptides both in substrate binding and catalysis. The rat and human liver, rat exudate, and human erythrocyte enzymes revealed similar Km values for the best substrates, the values increasing in the following order: ArgPhe, ArgTrp, ArgLys < ArgVal, ArgGly, Arg-2-naphthylamide < ArgGlyGly. The kcat values were also similar for the four arginine aminopeptidases. Arg-2-naphthylamide was by far the most rapidly hydrolyzed substrate by all enzymes followed by ArgPhe and ArgTrp. With peptide substrates the highest Cl? activation (10–20%) was found with ArgPhe and ArgTrp. With Arg-2-naphthylamide, however, the activating effect of 0.2 m Cl? was severalfold. The hydrophobicity of the C-terminal residue of the substrate seemed to play an important role both in the Cl? effect and substrate catalysis. Substrate binding, however, also depended on the charged groups of the substrate. Evidently Arg-2-naphthylamide and the peptides were hydrolyzed at the same active center but the mechanisms involved in the hydrolyses of chromogenic substrates and peptides may be different. It was also concluded that the less specific Cl?-activated enzyme from human erythrocytes does not belong to the same group of Cl?-activated arginine aminopeptidases that show a narrow substrate specificity.  相似文献   

14.
A peptidase acting on Leu-Gly-Gly and Leu-Tyr at pH 8 to 10 was purified about 670-fold from germinated grains of barley (Hordeum vulgare L.). Gel electrophoretic analyses indicated a purity of about 90%. The purified enzyme is remarkably similar to mammalian leucine aminopeptidases (EC 3.4.1.1) both in chemical and in enzymatic properties. It has a sedimentation constant of 12.7S and a molecular weight of about 260,000. The enzyme has a high activity on leucine amide and di- and tripeptides with N-terminal leucine or methionine; leucyl-β-naphthylamide, in contrast, is hydrolyzed very slowly. The enzyme also liberates N-terminal amino acids from the insulin B chain. The pH optima for the hydrolysis of different substrates depend on the buffers used; highest reaction rates are generally obtained at pH 8.5 to 10.5. Mg2+ and Mn2+ ions stabilize (and probably activate) the enzyme. In contrast to mammalian leucine aminopeptidases, the barley enzyme is inactivated in the absence of reducing sulfydryl compounds.  相似文献   

15.
Dipeptidyl peptidase (DPP III) was purified from rat and human erythrocytes using an identical procedure. Electrophoretic analyses revealed the same molecular size and pI for both enzymes. The molecular mass of the human enzyme, measured by matrix-assisted laser desorption/ionization MS, was 82500+/-60 Da. Its tryptic peptide mass profile was determined using the same technique, and the amino acid sequence of two internal peptides was obtained by tandem MS and Edman degradation. A search of databases revealed a high similarity between the human erythrocyte and rat liver DPP III: 21 matches out of 34 detected peptides were found, covering 40% of the total sequence. Matched peptides included the peptide harboring the characteristic HELLGH sequence motif, and a stretch of 19 identical amino acids, containing Glu, a putative ligand of active site zinc. Both enzymes preferred Arg-Arg-2-naphthylamide, and were activated by micromolar Co2+, differing in their pH optima and kcat/Km. Zn2+ ions, sulfhydryl reagents, and aminopeptidase inhibitors, especially probestin, inhibited the rat DPP III more potently. The two enzymes showed the highest affinity for angiotensin III (Ki < 1 microM) and a preference for ahydrophobic residue at the P1' site. However, significant differences in the binding constants for several peptides indicated non-identity in the active site topography of human and rat erythrocyte DPP III.  相似文献   

16.
A peptidase inactivating neurotensin at the Pro10-Tyr11 peptidyl bond, leading to the biologically inactive fragments neurotensin1–10 and neurotensin11–13 was purified from rat brain homogenate. The peptidase was characterized as a 70 kDa monomer and could be classified as a metaliopeptidase with respect to its sensitivity to o-phenanthroline, EDTA and divalent cations. The enzyme was also strongly inhibited by dithiothreitol but appeared totally insensitive to thiol-blocking agents, acidic and serine protease inhibitors. Experiments performed with a series of highly specific peptidase inhibitors clearly indicated that the peptidase was a novel enzyme distinct from previously purified cerebral peptidases. The enzyme displayed a rather high affinity for neurotensin (Km = 2.3 itM). Studies on its specificity indicated that: (i) neurotensin9–13 was the shortest neurotensin fragment with full inhibitory potency of [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule progressively led to inactive analogs; (ii) the peptidase exhibited a strong stereospecificity towards the residues in positions 8, 9 and 11. By contrast, neither introduction of a steric hindrance in position 11 nor amidation of the C-terminal end of the neurotensin molecule affected the ability of the corresponding analog to inhibit [3H]neurotensin degradation; (iii) Pro-Phe was the most potent dipeptide to compete for [3H]neurotensin degradation; (iv) the peptidase could not be described as an exclusive “neurotensinase” activity since, in addition to the neurotensin natural analogs (neuromedin N and xenopsin), non related natural peptides such as angiotensins I and II, dynorphins 1–8 and 1–13, atriopeptin III and bradykinin potently inhibited [3H]neurotensin degradation. Most of these peptides behaved as substrates for the enzyme.  相似文献   

17.
An aminopeptidase was purified from Aspergillus sojae X–816. The molecular weight of the enzyme was estimated to be 220,000. The isoelectric point was at pH 5.3. The optimum pH for l-leucylglycylglycine was 7.5. The enzyme was stable up to 37°C against temperature treatment for 15 min. Some chelating agents inhibited the enzyme activity. The Km value for l-leucylglycylglycine at pH 7.5 and 37°C was 45 mm. The Km value for l-leucyl-β-naphthylamide at pH 7.0 and 37°C was 2.2 mm.  相似文献   

18.
Enkephalin-containing polypeptides derived from pro-enkephalin A, pro-enkephalin B, or pro-opiomelanocortin were inhibitors of enkephalin degradation by aminoenkephalinases purified from cytosol or membranes. Of the peptides, Arg°-Met-enkephalin was the most potent inhibitor for the aminoenkephalinases, with an IC50 of about 0.6 μM, it was more effective than bestatin (IC50=0.8–1.0 μM). This inhibition was partly due to substrate competition. Arg°-Met-enkephalin was hydrolyzed by aminoenkephalinases to form Arg, Tyr, and Gly-Gly-Phe-Met in a substrate-inhibited manner. The hexapeptide also inhibited the breakdown of Arg- and Tyr-β-naphthylamide by the membrane aminoenkephalinase. Since Arg°-Met-enkephalin did not inhibit leucine aminopeptidase, it was a more selective inhibitor than bestatin of Met-enkephalin breakdown by aminopeptidases. Arg°-Met-enkephalin inhibited enkephalin breakdown by synaptosomal plasma membranes but not by brain slices. Our data suggest that in addition to their possible role as opioids, the enkephalin-containing polypeptides may be regulators of enkephalin levels.  相似文献   

19.
The role of the unique fully conserved tryptophan in metallopeptidase family M49 (dipeptidyl peptidase III family) was investigated by site-directed mutagenesis on human dipeptidyl peptidase III (DPP III) where Trp300 was subjected to two substitutions (W300F and W300L). The mutant enzymes showed thermal stability equal to the wild-type DPP III. Conservative substitution of the Trp300 with phenylalanine decreased enzyme activity 2-4 fold, but did not significantly change the Km values for two dipeptidyl 2-naphthylamide substrates. However, the Km for the W300L mutant was elevated 5-fold and the kcat value was reduced 16-fold with Arg-Arg-2-naphthylamide. Both substitutions had a negative effect on the binding of two competitive inhibitors designed to interact with S1 and S2 subsites.These results indicate the importance of the aromatic nature of W300 in DPP III ligand binding and catalysis, and contribution of this residue in maintaining the functional integrity of this enzyme’s S2 subsite.  相似文献   

20.
A protamine-degrading marine bacterium was isolated from marine soil and identified as Aevomonas salmonicida subsp. based on its taxonomical characteristics. An alanine-specific aminopeptidase, called aminopeptidase K, from an extract of the strain was purified and characterized. The aminopeptidase K was purified about 80-fold by fractionation with ammonium sulfate and column chromatography on QA-52 cellulose, Phenyl Superose and Superose 12. The purified enzyme is composed of 6 subunits of 86 kDa with a molecular mass of 520 kDa according to gel filtration and SDS–PAGE. The N-terminal sequence of the enzyme was H · Gly-Gln-GIn-Pro-Gln-Ile-Lys-Try-Tyr-His-Asp-Tyr-Asp-Ala-Pro-Asp-Tyr-Tyr-Ile-Thr-. It is inhibited by monoiodoacetate, N-ethylmaleimide, and puromycin. The Michaelis constant (Km) and the maximal rate of hydrolysis (Vmax) were, respectively, 0.28 mm and 49.4 μmol/min/mg for the l-Ala-β-naphthylamide substrate. The optimum pH and optimum temperature were 6.5 and 45°C, respectively. The purified enzyme was highly specific to l-Ala-β-naphthylamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号