首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of two new bivalved arthropods, Loricicaris spinocaudatus gen. et sp. nov. and Nereocaris briggsi sp. nov. from the middle Cambrian (Series 3, Stage 5) Burgess Shale Formation (Collins Quarry locality on Mount Stephen, Yoho National Park, British Columbia, Canada), is described. The material was originally assigned to the genus Branchiocaris, but exhibits distinctive character combinations meriting its assignment to other taxa. Loricicaris spinocaudatus possesses an elongate and spinose abdomen comparable to the contemporaneous Perspicaris and Canadaspis, as well as chelate second head appendages and subtriangular exopods, comparable to Branchiocaris. Nereocaris briggsi possesses a laterally compressed carapace, elongate and delicate appendages and a medial eye located between a pair of lateral eyes on a rhomboidal eye stalk. Although undoubtedly congeneric with Nereocaris exilis from a slightly younger horizon of the Burgess Shale Formation, N. briggsi differs in overall proportions and segment number, warranting assignment to a new species. The newly described taxa were coded into an extensive cladistic analysis of 755 characters, and 312 extinct and extant panarthropods, including a variety of Cambrian bivalved arthropods from both the Burgess Shale and the Chengjiang Lagerstätten. Cambrian bivalved arthropods consistently resolved as a paraphyletic assemblage at the base of Arthropoda. Important innovations in arthropod history such as the specialization of the deutocerebral head appendages and a shift from a nekton‐benthic deposit feeding habit to a benthic scavenging/predatory habit, the symplesiomorphic feeding condition of Euarthropoda (crown‐group arthropods), were found to have occurred among basal bivalved arthropods.  相似文献   

2.
Abstract: Brachiopods are marine Lophotrochozoa whose soft parts are enclosed in a bivalved shell. Although brachiopods are represented by a rich record from the Early Cambrian to the present, the origin of their bivalved body plan remains controversial. The Early Cambrian organophosphatic tommotiids Micrina and Paterimitra from Australia have been proposed as stem brachiopods. Here, we describe their earliest ontogeny, indicating that tommotiids possessed bivalved planktotrophic larvae. The curious combinations of characters in Micrina and Paterimitra indicate that they may belong to the stems of the Linguliformea and Rhynchonelliformea, respectively. The bivalved shell of adult living brachiopods may represent a plesiomorphic character retained from planktic tommotiid larvae; the crown group body plan of the Brachiopoda may have evolved through the paedomorphic retention of a bivalved larval state.  相似文献   

3.
Cambridium, Bagenovia, and Stenothecoides, composing the Family Cambridiidae, a monotypic superfamily and an order, were in 1960 assigned (although with a query) to the molluscan class Monoplacophora. The basic error of this assignment, according to the author, was the assumption that these specimens are univalves. One specimen from Siberia and a second from Alaska demonstrate that Stenothecoides is bivalved; Bagenovia was first described as a bivalve, but the implication of two valves was ignored. Short internal ridges normal to the shell margin in Cambridium and Stenothecoides, described by Rasetti and Horný, show little resemblance to features of pelecypod shells. These markings are not homologous to paired muscle scars of monoplacophorans. The asymmetric bivalved shell and internal furrows are interpreted as features of class-rank significance; the extinct class Stenothecoida is proposed to accommodate these genera. These animals are most common in Lower Cambrian, but range into Middle Cambrian. They may have been functionally similar to brachiopods, but were unable to compete with those more efficient bivalves.  相似文献   

4.
Although the fossil record of biramous arthropods commences in the Lower Cambrian, unequivocal uniramous arthropods do not appear until the Upper Silurian, in association with terrestrial biotas. Here we report an Upper Cambrian marine arthropod from East Siberia that possesses some significant myriapodan features. The new arthropod,Xanthomyria spinosa n. gen., n. sp., closely resembles examples of archipolypodans from the Late Palaeozoic. If this resemblance genuinely represents myriapod affinities, this would be the first convincing myriapod from the Cambrian. Suggestions of an early branching point of the myriapods from other arthropods would be consistent with this. Conversely, an as yet poorly known clade of multi-segmented arthropods may exist in the Cambrian, with no close affinities to the myriapods.   相似文献   

5.
《Palaeoworld》2014,23(3-4):225-228
Isoxys is a very common Cambrian bivalved arthropod, specimens of which are normally preserved only as valves. The discovery of the soft anatomy of Isoxys may greatly assist understanding affinities and functional morphology. Isoxys minor Luo and Hu in Luo et al., 2008 is the most common representative of all animal species known from the lower Cambrian Guanshan fauna (Cambrian Series 2, Stage 4) at the Shitangshan Section, near Kunming, Yunnan Province, Southwest China. Here we describe and reconstruct the morphology of I. minor on the basis of newly illustrated fossils and a few new specimens that bear soft-parts including new discovery of frontal grasping appendages. Like the soft anatomy of other known Isoxys, it bears a pair of large stalked eyes, a pair of specialized frontal grasping appendages, approximately 12–14 paired biramous limbs, and a helm-like tail exposed outside the valves.  相似文献   

6.
本文报道了一块来自云南省昆明市附近寒武纪第二世第四期关山生物群具咬痕的双瓣壳节肢动物吐卓虫 (Tuzoia)化石, 系吐卓虫咬痕化石在全球范围的首次发现。该发现证实作为主动捕食者的吐卓虫很可能被大型捕食者(如奇虾类或莱德利基虫类三叶虫等)捕食, 说明寒武纪早期的海洋生物群落已经具有高度复杂化的食物链, 为进一步了解吐卓虫的生态位及深入探讨寒武纪大爆发时期海洋生态系统食物网结构提供了新的信息。  相似文献   

7.
本文报道了一块来自云南省昆明市附近寒武纪第二世第四期关山生物群具咬痕的双瓣壳节肢动物吐卓虫 (Tuzoia)化石, 系吐卓虫咬痕化石在全球范围的首次发现。该发现证实作为主动捕食者的吐卓虫很可能被大型捕食者(如奇虾类或莱德利基虫类三叶虫等)捕食, 说明寒武纪早期的海洋生物群落已经具有高度复杂化的食物链, 为进一步了解吐卓虫的生态位及深入探讨寒武纪大爆发时期海洋生态系统食物网结构提供了新的信息。  相似文献   

8.
Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans (‘great-appendage’ arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids).  相似文献   

9.
Abstract: Abundant material from a new quarry excavated in the lower Cambrian Emu Bay Shale (Kangaroo Island, South Australia) and, particularly, the preservation of soft‐bodied features previously unknown from this Burgess Shale‐type locality, permit the revision of two bivalved arthropod taxa described in the late 1970s, Isoxys communis and Tuzoia australis. The collections have also produced fossils belonging to two new species: Isoxys glaessneri and Tuzoia sp. Among the soft parts preserved in these taxa are stalked eyes, digestive structures and cephalic and trunk appendages, rivalling in quality and quantity those described from better‐known Lagerstätten, notably the lower Cambrian Chengjiang fauna of China and the middle Cambrian Burgess Shale of Canada.  相似文献   

10.
The anatomy of the bivalved arthropod Isoxys (Early and Middle Cambrian) is reconstructed, based on new evidence from soft parts and exoskeletal design and on a critical review of previous work. Isoxys had a long segmented body flanked with a pair of short antennules, followed by a series of 14 biramous appendages provided with long paddle-like exopods concealed under a widely open bivalved carapace folded dorsally and bearing long cardinal spines. The close resemblance between Isoxys and Recent pelagic crustaceans (halocyprid ostracods, larval stages of malacostracans) indicates that Isoxys was probably an active epipelagic swimmer (evidence from soft parts, carapace design and distributional pattern). Some species (e.g. I. auritus and I. paradoxus from the Maotianshan Shale biota; Early Cambrian) may have lived in the vicinity of the bottom either permanently or temporarily, whereas others may have had ecological preferences for more open-marine settings. The spinosity of Isoxys had a possible role in predatorial deterrence rather than in buoyancy control or in retarding sinking within the water column. The presence of Isoxys in the Maotianshan Shale of S. China indicates that arthropods had already colonized midwater niches by the Early Cambrian. The midwater communities of the Maotianshan Shale comprised numerous other invertebrates, such as abundant medusiform eldonids, vetulicolids, chordates and possibly early vertebrates. This contradicts the opinion that pelagic communities remained poorly developed until late Cambrian/Ordovician times and that the occupation of the midwater niches largely post-dates the initial diversification of the benthic faunas.  相似文献   

11.
The Chengjiang Lagerstätte in the Lower Cambrian of South China yields a small, larva‐like arthropod, which was considered to be a protaspis of naraoiids by many authors. The discovery of a large number of well‐preserved specimens from many new localities has allowed the original study to be revised. The relatively large size, stable morphology and unusual structure of the appendages indicate that these specimens represent adults of a new arthropod, Primicaris larvaformis. The larva‐like outline is considered to have arisen by the heterochronic process of progenesis. In addition, this animal displays primitive aspects of bodyplan and limb morphology that suggest a basal position within arachnomorphs, or perhaps even arthropods, and the similarities to the Vendian arthropod‐like animal Parvancorina probably provide an evolutionary link between Vendian forms and Cambrian arthropods.  相似文献   

12.
An updated reconstruction of the body plan, functional anatomy and life attitude of the bradoriid arthropod Kunmingella is proposed, based on new fossil specimens with preserved soft parts found in the lower Cambrian of Chengjiang and Haikou (Yunnan, SW China) and on previous evidence. The animal has a single pair of short antennae pointing towards the front (a setal pattern indicates a possible sensory function). The following set of seven appendages (each composed of a 5-segmented endopod and a leaf-like exopod fringed with setae) is poorly differentiated, except the first three pairs (with possible rake-like endopodial outgrowths, smaller exopods) and the last pair of appendages (endopod with longer and more slender podomeres). The endopods are interpreted as walking legs with a possible role in handling food particles (marginal outgrowth with setae). The leaf-like exopods may have had a respiratory function. The trunk end is short, pointed, flanked with furcal-like rami and projects beyond the posterior margin of the carapace. The attachment of the body to the exoskeleton is probably cephalic and apparently lacks any well-developed adductor muscle system. The inferred life attitude of Kunmingella (e.g. crawling on the surface of the sediment) was that of a dorsoventrally flattened arthropod capped by a folded dorsal shield (ventral gape at least 120°), thus resembling the living ostracode Manawa. The animal was also probably able to close its carapace as a response to environmental stress or to survive unfavourable conditions (e.g. buried in sediment). The anterior lobes of the valves are likely to have accommodated visual organs (possibly lensless receptors perceiving ambient light through the translucent head shield). Preserved eggs or embryos suggest a possible ventral brood care. The presence of Kunmingella in coprolites and its numerical abundance in Chengjiang sediment indicate that bradoriids constituted an important source of food for larger predators. Kunmingella differs markedly from the representatives of the crown group Crustacea (extant and Cambrian taxa) and from the stem group derivatives of Crustacea (exemplified by phosphatocopids and some ‘Orsten’ taxa) in showing no major sign of limb specialization (e.g. related to feeding strategies). Although it resembles other Chengjiang euarthropods in important aspects of its body plan (e.g. uniramous antennae, endopod/exopod configuration), Kunmingella possesses several features (e.g. antennal morphology, post-antennular appendages with 5-segmented endopods) which support the view that bradoriids may be very early derivatives of the stem line Crustacea.  相似文献   

13.
Cambrian view     
The analysis of visual systems is a valuable method of assessing phylogenetic processes. As in the present animal world, we find simple and complex systems in the Lower Cambrian. One may detect “simple eyes” for example with an advanced design in lobopodians, while the existence of even more simple “simple eyes” is very probable but still to be proved. More complex systems are to be found. In Leanchoilia illecebrosa Hou, 1987 and Leanchoilia superlata Walcott, 1912 there are probable dorsal median eyes and a pair of fine, stalked ventral eyes. Both systems may contribute to phylogenetic and systematic discussions. These presumably movable stalked eyes may be regarded as an adaptation to a mobile lifestyle. They suggest that the physiologic principle of nystagmus to stabilise the visual world of an animal in motion was already realised in Leanchoilia, perhaps for the first time. To analyse the surface of the early eyes from the Lower Cambrian – not only of Leanchoilia, but of any other forms as well – the number, shape and other parameters of the lenses could lead to further knowledge regarding vision in early invertebrates.  相似文献   

14.
Arthropods are characterized by a rigid, articulating, exoskeleton operated by a lever‐like system of segmentally arranged, antagonistic muscles. This skeletomuscular system evolved from an unsegmented body wall musculature acting on a hydrostatic skeleton, similar to that of the arthropods’ close relatives, the soft‐bodied onychophorans. Unfortunately, fossil evidence documenting this transition is scarce. Exceptionally‐preserved panarthropods from the Cambrian Lagerstätte of Sirius Passet, Greenland, including the soft‐bodied stem‐arthropod Pambdelurion whittingtoni and the hard‐bodied arthropods Kiisortoqia soperi and Campanamuta mantonae, are unique in preserving extensive musculature. Here we show that Pambdelurion's myoanatomy conforms closely to that of extant onychophorans, with unsegmented dorsal, ventral and longitudinal muscle groups in the trunk, and extrinsic and intrinsic muscles controlling the legs. Pambdelurion also possesses oblique musculature, which has previously been interpreted as an arthropodan characteristic. However, this oblique musculature appears to be confined to the cephalic region and first few body segments, and does not represent a shift towards arthropodan myoanatomy. The Sirius Passet arthropods, Kiisortoqia and Campanamuta, also possess large longitudinal muscles in the trunk, although, unlike Pambdelurion, they are segmentally divided at the tergal boundaries. Thus, the transition towards an arthropodan myoanatomy from a lobopodian ancestor probably involved the division of the peripheral longitudinal muscle into segmented units.  相似文献   

15.
The conodont animal   总被引:3,自引:0,他引:3  
A unique specimen of a small, elongate, soft-bodied animal from the Lower Carboniferous of the Edinburgh district, Scotland, is described. The head expands anteriorly into two lobate structures flanking a central lumen; behind this lies a conodont apparatus, apparently in situ, consisting of an aligned set of ramiform elements followed by a pair of ozarkodiniform elements and one of platform elements. From the morphology of the platform elements the animal has been identified as Clydagnathus? cf. cavusformis. Repeated structures which may represent segments are evident in the posterior part of the trunk, which bears a posterior and a caudal fin, each supported by rays. The animal shows similarities to both chordates and chactognaths, but the evidence supports its assignment to a separate phylum, the Conodonta. The function of the conodonts remains equivocal, but it seems more likely that they served as teeth than as internal supports.  相似文献   

16.
Schoenemann, B. & Clarkson, E.N.K. 2011: Eyes and vision in the Chengjiang arthropod Isoxys indicating adaptation to habitat. Lethaia, Vol. 44, pp. 223–230. The arthropod Isoxys is common in the lower Cambrian Chengjiang biota, but only a few specimens retain details of the eye structure, though the eyes are invariably flattened. One specimen of Isoxys auritus has a pair of large eyes, projecting from the body and showing a flexible eye‐stalk, a discoidal, slightly convex palpebral lobe, and part of the original visual surface upon which lenses can be distinguished. The remarkable preservation allows the eye parameter, sensitivity, and the anatomical acuity of this eye to be established; it was adapted to an environment where the illumination corresponds to that of street light at night, in other words up to ~140 metres depth. This fits well with previous estimates. A second specimen, from a different locality (Mafang), interpreted as a different form, probably a different species, was adapted to more shallow, well‐lit surface waters. □Arthropoda, Cambrian, Chengjiang, ecological niche, Isoxys, vision.  相似文献   

17.
Abstract: Vetulicolians are problematic Cambrian fossils with a debated phylogenetic history. Here, we describe two vetulicolian specimens from the Lower Cambrian Sirius Passet locality in North Greenland. One of the specimens is assigned to Ooedigera peeli gen. et sp. nov, whereas the other is retained under open nomenclature. The mode of tail flexibility has been debated in the literature, and we argue here that the tail normally flexed laterally to generate power strokes rather than dorsoventrally. The phylogenetic relationships of vetulicolians are discussed in the light of current knowledge of deuterostome phylogeny and morphology, and it is concluded that the best hypothesis on currently available evidence is that vetulicolians are a clade or paraphyletic assemblage of stem‐Deuterostomata. The presence of a voluminous, sediment‐filled anterior chamber suggests that the atrium may be a synapomorphy of deuterostomes.  相似文献   

18.
Three species ofOcruranus Liu, 1979 are described from the Bastion Formation of North-East Greenland, of late Early Cambrian (middle Dyeran of North American usage) age, representing the youngest record of a genus originally described from the earliest Cambrian Meishucunian Stage of China. An accompanying species, tentatively assigned toXianfengella He &Yang, 1982, seems also to be present in South Australia in strata of late Early Cambrian (Botoman of Siberian usage) age, although also this genus was described originally from the Meishucunian.Ocruranus andXianfengella from China have been interpreted as possibly parts of coeloscleritophoran scleritomes, perhaps halkieriids, rather than individual molluscan shells. Their shell form is not typical of helcionelloids which otherwise dominate the Early Cambrian molluscan record, but conclusive evidence of affinity is not forthcoming from the Greenland records. New taxa:Ocruranus septentrionalis n. sp. andOcruranus tunuensis n. sp.   相似文献   

19.
A number of lobopodian taxa from the Cambrian display pairs of sclerotized plates symmetrically positioned along the dorsum of the animal, predominantly above the walking appendages. Most genera were described from complete body fossils exquisitely preserved in the famous Cambrian Lagerstätten, but lobopodian phosphatized plates are found worldwide as typical components of Cambrian small shelly fossil assemblages (SSF). Details regarding intraspecific and ontogenetic variation in lobopod plates are elusive, and the lack of details of ornamentation in Lagerstätte specimens does not minimize the problem. We document here an assemblage of well‐preserved isolated plates of Onychodictyon sp. from the Lower Cambrian (Cambrian Series 2, Stage 4) of North Greenland. Two specimens exhibit perfectly conjoined plates from successive moults. Details of ornamentation and the outline and profile of the fixed plates are identical, but width and length of the underlying plate are 24% larger. These specimens boost the body of evidence that lobopodians moulted but also show that plate outline and ornamentation did not vary during ontogeny.  相似文献   

20.
Lin, J.‐P., Ivantsov, A.Y. & Briggs, D.E.G. 2011: The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, Vol. 44, pp. 344–349. Many non‐trilobite arthropods occur in Cambrian Burgess Shale‐type (BST) biotas, but most of these are preserved in fine‐grained siliciclastics. Only one important occurrence of Cambrian non‐trilobite arthropods, the Sinsk biota (lower Sinsk Formation, Botomian) from the Siberian Platform, has been discovered in carbonates. The chemical compositions of samples of the enigmatic arthropod Phytophilaspis pergamena Ivantsov, 1999 and the co‐occurring trilobite Jakutus primigenius Ivantsov in Ponomarenko, 2005 from this deposit were analysed. The cuticle of P. pergamena is composed of mainly calcium phosphate and differs from the cuticle of J. primigenius, which contains only calcium carbonate. Phosphatized cuticles are rare among large Cambrian arthropods, except for aglaspidids and a few trilobites. Based on recent phylogenetic studies, phosphatization of arthropod cuticle is likely to have evolved several times. □arthropod cuticle, Burgess Shale‐type preservation, fossil‐diagenesis, phosphatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号