首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different temperature-sensitive mutants of vesicular stomatitis virus have been characterized in terms of their ability to induce synthesis of viral ribonucleic acid (RNA) in BHK-21 cells at 39 C (the restrictive temperature for these mutants). Mutants belonging to complementation groups I and IV (and probably II) did not induce actinomycin-resistant RNA synthesis in infected cells incubated at 39 C. All three mutants comprising complementation group III induced viral RNA synthesis at 39 C. The temperature sensitivity of the defective viral functions has also been studied by temperature-shift experiments. The functions associated with the mutants of groups I, II, and IV were required early, whereas the function associated with the group III mutants was not required until a late stage of the viral cycle. The heat sensitivity of extracellular virion was not correlated with complementation group.  相似文献   

2.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

3.
Twenty-four temperature-sensitive mutants of mengovirus were characterized physiologically with respect to phenotype. The mutants were separated into four classes on the basis of viral RNA synthesis. L-67-S cells infected with five of the mutants synthesized little viral RNA at 39.5 C. These mutants are designated RNA-. One mutant is designated RNA* since its RNA synthesis is altered at both 39.5 and 31.5 C. The other mutants were divided into two groups, RNA plus or minus (25 TO 49% of wild-type RNA synthesis) and RNA plus (50 to 100% of wild-type RNA synthesis). The time of expression of the mutation in the RNA- mutants was estimated from the results of reciprocal temperature-shift experiments. The mutatation in ts12 appears to be expressed at the time RNA synthesis normally begins. The defect in three of the mutants was expressed 1 to 2 h before RNA synthesis is normally detectable. Protein synthesis is required before RNA synthesis begins when the cells are shifted from 39.5 to 31.5 C. The RNA polymerase synthesized by cells infected with these RNA- mutants at 31.5 C was stable and fully active when assayed at 39.5 C in vitro. The sedimentation profiles of the viral RNA synthesized by cells infected with RNA plus and RNA plus or minus mutants are similar to wild-type profiles with the exception of ts148. Cells infected with this RNA plus or minus mutant synthesize RNA that sediments in a sucrose gradient like replicative-intermediate RNA, but little mature viral RNA is evident. The results of step-up experiments indicate that the temperature-sensitive period for the majority of the RNA plus and RNA plus and minus mutants extends through most of the replicative cycle. The temperature-sensitive defect of four of the mutants, however, was expressed in the first hour, suggesting that some undefined early function is required for the eventual maturation of mengovirus. The virions of three of the RNA- mutants were more thermolabile than wild-type virions. Five of the RNA plus and RNA plus or minus mutants were also thermolabile. Genetic complementation at a significant level was not detectable in mixed infections of the mutants described.  相似文献   

4.
Defects in RNA and protein synthesis of seven Sindbis virus and seven Semliki Forest virus RNA-negative, temperature-sensitive mutants were studied after shift to the restrictive temperature (39 degrees C) in the middle of the growth cycle. Only one of the mutants, Ts-6 of Sindbis virus, a representative of complementation group F, was clearly unable to continue RNA synthesis at 39 degrees C, apparently due to temperature-sensitive polymerase. The defect was reversible and affected the synthesis of both 42S and 26S RNA equally, suggesting that the same polymerase component(s) is required for the synthesis of both RNA species. One of the three Sindbis virus mutants of complementation group A, Ts-4, and one RNA +/- mutant of Semliki Forest virus, ts-10, showed a polymerase defect even at the permissive temperature. Seven of the 14 RNA-negative mutants showed a preferential reduction in 26S RNA synthesis. The 26S RNA-defective mutants of Sindbis virus were from two different complementation groups, A and G, indicating that functions of two viral nonstructural proteins ("A" and "G") are required in the regulation of the synthesis of 26S RNA. Since the synthesis of 42S RNA continued, these functions of proteins A and G are not needed for the polymerization of RNA late in infection. The RNA-negative phenotype of 26S RNA-deficient mutants implies that proteins regulating the synthesis of this subgenomic RNA must have another function vital for RNA synthesis early in infection or in the assembly of functional polymerase. Several of the mutants having a specific defect in the synthesis of 26S RNA showed an accumulation of a large nonstructural precursor protein with a molecular weight of about 200,000. One even larger protein was demonstrated in both Semliki Forest virus- and Sindbis virus-infected cells which probably represents the entire nonstructural polyprotein.  相似文献   

5.
6.
M V Haspel  R Duff    F Rapp 《Journal of virology》1975,16(4):1000-1009
Twenty-four genetically stable temperature-sensitive mutants of measles virus were isolated after mutangenesis by 5-azacytidine, 5 fluorouracil, or proflavine. The restricted replication of all mutants at 39 C was blocked subsequent to cell penetration and could not be attributed to heat inactivation of virus infectivity. Complementation analysis was made possible through the use of poly-L-ornithine. The members of one complementation group exhibited wild-type RNA synthesis at the nonpermissive temperature and induced the synthesis of virus antigens. These mutants were found defective in both hemolysin antigen synthesis and cell fusion "from within," supporting the unitary hypothesis for these functions. The members of the other two complementation groups synthesized neither virion RNA nor detectable virus antigens at the nonpermissive temperature.  相似文献   

7.
8.
Temperature-sensitive (ts) mutants of Newcastle disease virus have been isolated and characterized genetically (complementation), biochemically (RNA synthesis) and biologically (fusion from within and hemadsorption). Fifteen of these mutants have been divided into five complementation groups. Groups A (five mutants) and E (one mutant) are ts for RNA synthesis (RNA-) as well as for the other functions. Group B contains four RNA+ mutants of which one is ts for fusion, one for hemadsorption and two for neither function. Group C contains one RNA+ mutant which is a poor cell fuser. Group D contains two RNA+ mutants which are ts for fusion. In addition, two noncomplementing mutants (group BC) fail to complement both group B and group C mutants while exhibiting complementation with mutants in groups A, D, and E.  相似文献   

9.
10.
Simian Virus 40 Deoxyribonucleic Acid Synthesis: the Viral Replicon   总被引:236,自引:137,他引:99       下载免费PDF全文
Three temperature-sensitive (ts) mutants of simian virus 40 (SV40) in complementation group A (tsA7, tsA28, tsA30) have been isolated and characterized in permissive and restrictive host cells. At 41 C in the AH line of African green monkey kidney cells, the mutants are deficient in an early function required to produce infectious viral deoxyribonucleic acid (DNA). Temperature-shift experiments and analysis of SV40 viral DNA replication by gel electrophoresis have provided strong evidence that the ts gene product of the three mutants is directly required to initiate each new round of viral DNA replication but is not required to complete a cycle which has already begun. The synthesis of mutant DNA molecules themselves can be initiated by a nonmutant gene product in viral complementation studies at 41 C. The cell, however, cannot substitute a host function to provide the initiator required for the replication of free viral DNA. The viral initiator is also required to establish the stable transformation of 3T3 cells.  相似文献   

11.
Temperature-sensitive mutants of simian virus 40 (SV40) have been classified as those that are blocked prior to viral DNA synthesis at the restrictive temperature, "early" mutants, and those harboring a defect later in the replication cycle, "late" mutants. Mutants of the A and D complementation groups are early, those of the B, C, and BC groups are late. Our results confirm earlier reports that A mutants are defective in a function required for the initiation of each round of viral DNA synthesis. D mutants, on the other hand, continue viral DNA replication at the restrictive temperature after preincubation at the permissive temperature. The length of time required for D function to be expressed at the permissive temperature-after which infection proceeds unabated on shifting of the cultures to the restrictive temperature-is 10 to 20 h. The viral DNA synthesized in D mutants under these conditions progresses in normal fashion through replicative intermediate molecules to mature component I and II DNA molecules.  相似文献   

12.
Temperature-sensitive mutants of Japanese encephalitis virus.   总被引:2,自引:2,他引:0       下载免费PDF全文
Ten stable temperature-sensitive mutants of Japanese encephalitis virus were isolated after mutagenesis by growth of cloned wild-type virus in the presence of the nucleic acid precursor analogs 5-fluorouracil and 5-azacytidine. Mutants were selected which grew at least 100-fold better at 33 degrees C than at 41 degrees C. The 5-fluorouracil was found to be more effective at inducing temperature-sensitive mutations than was 5-azacytidine. Analysis of the virus-specific RNA and proteins synthesized by each mutant at the nonpermissive temperature was used to determine biochemical phenotypes. The mutants were analyzed for abilities to complement in mixed infections. Although inefficient and sometimes nonreciprocal, complementation occurred at higher levels than previously reported for flavivirus mutants. Interference between mutants in some mixed infections was also observed. Seven complementation groups were defined. Three groups contained mutants incapable of synthesizing virus-specific RNA at the nonpermissive temperature, whereas the remaining complementation groups displayed an RNA+ phenotype. Levels of protein synthesis comparable to that of wild type were observed at the nonpermissive temperature in three groups. Two other groups were represented by mutants which synthesized only low levels of virus-specific proteins at the higher temperature. Mutants in the remaining two groups did not produce detectable levels of proteins under nonpermissive conditions.  相似文献   

13.
Temperature-sensitive mutants of Sindbis virus fail to grow at a temperature that permits growth of the wild type, but when certain pairs of these mutants, mixed together, infect cells at that temperature, viral growth (i.e., complementation) occurs. The yield from this complementation, however, is of the same order of magnitude as the infectivity in the inoculum. Since in animal virus infections the protein components of the virion probably enter the cell with the viral nucleic acid, it was necessary to demonstrate that the observed complementation required synthesis of new viral protein and nucleic acid rather than some sort of rearrangement of the structural components of the inoculum. To demonstrate that complementation does require new biosynthesis, three biochemical events of normal virus growth have been observed during complementation and correlated with the efficiency of viral growth seen in complementation. These events include: (i) entrance of parental viral ribonucleic acid (RNA) into a double-stranded form; (ii) subsequent synthesis of viral RNA; and (iii) synthesis and subsequent incorporation of viral protein(s) into cell membranes where they were detected by hemadsorption. Although the infecting single-stranded RNA genome of the wild type was converted to a ribonuclease-resistant form, the genome of a mutant (ts-11) incapable of RNA synthesis at a nonpermissive temperature was not so converted. However, during complementation with another mutant also defective in viral RNA synthesis, some of the RNA of mutant ts-11 was converted to a ribonuclease-resistant form, and total synthesis of virus-specific RNA was markedly enhanced. The virus-specific alteration of the cell surface, detected by hemadsorption, was also extensively increased during complementation. These observations support the view that complementation between temperature-sensitive mutants and replication of wild-type virus are similar processes.  相似文献   

14.
Genetic analysis of murine hepatitis virus strain JHM.   总被引:7,自引:6,他引:1       下载免费PDF全文
We performed a genetic analysis of 37 temperature-sensitive mutants of murine hepatitis virus strain JHM. Of our mutants, 32 did not induce murine hepatitis virus-specific RNA synthesis in infected cells at the restrictive temperature, 39 degrees C. By complementation testing we have identified at least seven nonoverlapping complementation groups. Six of the genes identified in this way are required for murine hepatitis virus-specific RNA synthesis. The seventh complementation group is made up of five mutants which induced virus-specific RNA synthesis at 39 degrees C.  相似文献   

15.
Nine temperature-sensitive (ts) mutants of nonattenuated Edmonston strain measles virus were isolated from wild-type virus which was grown in the presence of 5-fluorouracil. Adsorption, temperature shift, and complementation experiments indicated that all these mutants were restricted at an intracellular stage of infection. However, all the mutants were more rapidly inactivated at 41 C than was wild-type virus, suggesting that the ts product of each mutant either influences or is a structural component of the virus. Three complementation groups were found to be represented among the mutants. Group A contained one mutant and it did not induce synthesis of detectable amounts of viral antigen at the nonpermissive temperature (39 C). Group B consisted of six mutants which did not induce viral antigen synthesis at 39 C and one mutant which did. Group C was represented by one mutant and it induced viral antigen synthesis at 39 C. The two mutants which induced sythesis of viral antigen also induced synthesis of relatively small amounts of virus-specific RNA at 39 C. These mutants, while producing cytoplasmic and nuclear accumulations of viral antigen at 39 C, were restricted in production of syncytia and hemadsorption. All the mutants were less neurovirulent than wild-type virus, as indicated by their inability to produce acute disease in newborn hamsters.  相似文献   

16.
Ten temperature-sensitive mutants of simian virus 40 have been isolated and characterized in permissive cells. The mutants could be divided into three functional groups and two complementation groups. Seven mutants produced T antigen, infectious viral deoxyribonucleic acid (DNA), and structural viral antigen but predominantly the empty shell type of viral particles. Two mutants produced T antigen and infectious viral DNA, but, although viral structural protein(s) could be detected immunologically, no V antigen or viral particles were found. These two functional groups of mutants did not complement each other. A single mutant was defective in the synthesis of viral DNA, viral structural antigens, and viral particles. T antigen could be detected in infected cells by fluorescent antibody but was reduced by complement fixation assay. This mutant stimulated cell DNA synthesis at the restrictive temperature and complemented the other two functional groups of mutants.  相似文献   

17.
18.
Specific Sindbis virus-coded function for minus-strand RNA synthesis.   总被引:31,自引:26,他引:5       下载免费PDF全文
The synthesis of minus-strand RNA was studied in cell cultures infected with the heat-resistant strain of Sindbis virus and with temperature-sensitive (ts) belonging to complementation groups A, B, F, and G, all of which exhibited an RNA-negative (RNA-) phenotype when infection was initiated and maintained at 39 degrees C, the nonpermissive temperature. When infected cultures were shifted from 28 degrees C (the permissive temperature) to 39 degrees C at 3 h postinfection, the synthesis of viral minus-strand RNA ceased in cultures infected with ts mutants of complementation groups B and F, but continued in cultures infected with the parental virus and mutans of complementation groups A and G. In cultures infected with ts11 of complementation group B, the synthesis of viral minus-strand RNA ceased, whereas the synthesis of 42S and 26S plus-strand RNAs continued for at least 5 h after the shift to 39 degrees C. However, when ts11-infected cultures were returned to 28 degrees C 1 h after the shift to 39 degrees C, the synthesis of viral minus-strand RNA resumed, and the rate of viral RNA synthesis increased. The recovery of minus-strand synthesis translation of new proteins. We conclude that at least one viral function is required for alphavirus minus-strand synthesis that is not required for plus-strand synthesis. In cultures infected with ts6 of complementation group F, the syntheses of both viral plus-strand and minus-strand RNAs were drastically reduced after the shift to 39 degrees C. Since ts6 failed to synthesize both plus-strand and minus-strand RNAs after the shift to 39 degrees C, at least one common viral component appears to be required for the synthesis of both minus-strand and plus-strand RNAs.  相似文献   

19.
We constructed several well-defined mutations in the nonstructural portion of the poliovirus type I (Mahoney strain) genome by making small insertions in an infectious cDNA clone. The derived viral strains carrying the mutations exhibited a variety of distinct plaque phenotypes. Thus, we were able to examine genetic complementation between different pairs of mutants by comparing the yields of progeny virus in mixed and single infections. Two mutants bearing lesions in the 2A and 3A regions of the genome, which are defective in the inhibition of host cell translation and the synthesis of viral RNA, respectively, could be rescued efficiently by genetic complementation; three replication-deficient mutants containing insertions in the 2B, 3D (replicase), and 3'-untranslated regions could not. Both the 2A and 3A mutants could be rescued by each other and by all of the other mutants tested. Because yield enhancement was apparent well before the completion of a single infectious cycle, it is likely that complementation of both mutants involved early diffusion of functional products. These data provide the first unambiguous evidence that the nonstructural portion of the poliovirus genome contains multiple complementation groups. The data also suggest that certain nonstructural functions act only in cis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号