共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of recombinant human tumor necrosis factor (rhTNF) on normal human and mouse hemopoietic progenitor cells 总被引:2,自引:0,他引:2
K Akahane T Hosoi A Urabe M Kawakami F Takaku 《International journal of cell cloning》1987,5(1):16-26
We examined the effects of recombinant human tumor necrosis factor (rhTNF) on normal human and murine granulocyte-macrophage (CFU-gm) and erythroid (CFU-e, BFU-e) progenitor cells. We suppressed in vitro colony formation by human marrow CFU-gm, CFU-e and BFU-e or peripheral blood BFU-e by adding rhTNF to the culture in a dose-related manner. A half-maximal inhibition was observed with 1-10 ng/ml. Leukemic cell line K562 cells were found to be sensitive to rhTNF in the clonogenic colony assay. However, the clonal growth of murine marrow CFU-e and BFU-e colonies was less than 50% inhibited and CFU-gm growth was unaffected even at a concentration of 1,000 ng/ml. We observed slight to moderate inhibition after 24 h pulse exposure of both human and murine-committed progenitors to rhTNF prior to the culture. Intravenous injection of 1 mg/kg of rhTNF caused a marked decrease in marrow erythroid progenitors and consequently caused anemia in the mice. Our data indicate that rhTNF has a suppressive effect on normal human and murine hemopoietic colony formation in vitro and murine erythropoiesis in vivo. 相似文献
2.
Effects of human alpha-interferon on granulocyte-macrophage progenitor cells (CFU-GM) in vitro 总被引:1,自引:0,他引:1
Two preparations of human interferon (IFN)-alpha were assessed for their influence on granulocyte-macrophage progenitor cells (CFU-GM) in vitro. Both highly purified human IFN-alpha Ly and recombinant IFN-alpha 2a suppressed CFU-GM colony formation in a dose-dependent manner using low-density bone-marrow target cells. Suppression of CFU-GM colony formation was accompanied by an increase in clusters. However, depletion of monocytes, T lymphocytes and B lymphocytes from low-density bone-marrow cells resulted in insensitivity of progenitor cells to IFN-alpha. These results demonstrate that the effects of human IFN-alpha on myeloid progenitor cells (CFU-GM) are mediated by accessory cells within the bone marrow. 相似文献
3.
To determine the extent accessory cells mediate the effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on human hemopoietic progenitors in vitro, we added this hemopoietin to liquid cultures of single CD34-positive marrow cells. These were selected on a fluorescence-activated cell sorter using the HPCA-1 (My10) antibody. Myeloid, erythroid and a few mixed clones developed in 13% of wells in the apparent absence of accessory cells at the beginning of culture. Although accessory cells were generated quickly from the myeloid progenitors and could have mediated the action of rhGM-CSF, this was not the case in the majority of the erythroid clones in which no other cell types were recorded. We conclude that rhGM-CSF can act directly on a subset of erythroid progenitors and probably induces a substantial number of myeloid clones directly. 相似文献
4.
Hofer M Vacek A Weiterová L 《Physiological research / Academia Scientiarum Bohemoslovaca》2005,54(2):207-213
The aim of this study was to provide new data to the knowledge of mechanisms by which recombinant human granulocyte colony-stimulating factor (rhG-CSF), recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) enhance the numbers of colonies growing from hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in the murine bone marrow. The in vitro technique for cultivating GM-CFC from normal bone marrow cells was used. For evaluation of stimulatory actions of the drugs studied, the factors themselves or sera of mice given these factors were added to the cultures. The factors or the sera were present in the cultures either as the only potentially stimulatory agents or acted jointly with a suboptimum concentration of recombinant murine interleukin-3 (rmIL-3). It was found that both rhG-CSF and rmGM-CSF stimulate the proliferation of GM-CFC by a combination of direct mechanisms (direct actions on the target cells) and indirect effects (effects mediated through the induction of other cytokines and/or growth factors in the murine organism). The rhGM-CSF exhibited somewhat weaker in vitro effects in comparison with the other two factors and only indirect effects were noted. Additional in vivo experiments documented that, in spite of differences in mechanisms of action of the individual drugs studied on murine bone marrow cells in vitro, equal in vivo doses of the factors induce quantitatively similar effects on the production of GM-CFC in vivo. 相似文献
5.
G Migliaccio A R Migliaccio M L Druzin P J Giardina K M Zsebo J W Adamson 《Journal of cellular physiology》1991,148(3):503-509
We have studied the effect of recombinant human Stem Cell Factor (SCF) on the growth of human peripheral blood, bone marrow, and cord blood progenitor cells in semisolid medium. While SCF alone had little colony-stimulating activity under fetal bovine serum (FBS)-deprived culture conditions, SCF synergized with erythropoietin (Epo), granulocyte/macrophage colony-stimulating factor (GM-CSF), and interleukin 3 (IL-3) to stimulate colony growth. Colony morphology was determined by the late-acting growth factor added along with SCF. Of all the combinations of growth factors, SCF plus IL-3 and Epo resulted in the largest number of mixed-cell colonies--a larger number than observed with IL-3 and Epo alone even in FBS-supplemented cultures. These results suggest that SCF is a growth factor that more specifically targets early progenitor cells (mixed-cell colony-forming cells) and has the capacity to synergize with a wide variety of other hematopoietic growth factors to cause the proliferation and differentiation of committed progenitor cells. Our studies indicate that SCF may be the earliest acting growth factor described to date. 相似文献
6.
Murine lymphokine-activated killer (LAK) cells were generated from spleen cells of C57/BL6 mice by culture of spleen cells in vitro for 72 hours in medium containing 500 units/ml recombinant human interleukin 2 (IL-2), and effects of these LAK cells on proliferation of syngenic myeloid progenitor cells (CFU-GM) were observed. After 3 days culture, LAK cells were assayed for their cytotoxicity in a 4 hours 51Cr-release test. Either natural killer (NK) cell sensitive YAC-1 lymphoma cells or NK cell resistant LP-3 and WEHI-164 fibrosarcoma cells were efficiently lysed by murine LAK cells. When LAK cells were added into culture system in a final concentration of 5 x 10(4)/ml, 2 x 10(5)/ml, 8 x 10(5)/ml, CFU-GM were increased by 55.2%, 165.5%, and 194.4% of control respectively. LAK-CM also showed augmentative effect on CFU-GM growth. When 10% (v/v) of LAK-CM were added into culture system, CFU-GM were increased by 51.4% of control, but LAK-CM alone could not stimulate CFU-GM growth. Again, effects of LAK-BMC interaction on CFU-GM formation were investigated. CFU-GM were inhibited to 27.6% of control when 1 x 10(5) BMC were mixed with 8 x 10(5) LAK cells and incubated for 4 hours prior to CFU-GM culture. These data suggest that (1) LAK cells may secrete co-CSF which showed synergistic effect with CSF on CFU-GM proliferation: (2) When LAK cells contact with BMC, they showed significant cytotoxicity to myeloid progenitor cells which mediated decrease of CFU-GM formation. 相似文献
7.
The effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on human osteoblast-like cells 总被引:1,自引:0,他引:1
D B Evans R A Bunning R G Russell 《Biochemical and biophysical research communications》1989,160(2):588-595
The activity of human osteoblast-like cells cultured in vitro is regulated by a number of factors, which include systemic hormones as well as agents that can be produced locally within bone. Several cytokines and growth factors have been demonstrated to be produced by osteoblasts themselves, and this includes granulocyte-macrophage colony-stimulating factor (GM-CSF). In this report we show that recombinant human GM-CSF (rhGM-CSF) modulates the activities of osteoblast-like cells derived from human trabecular bone in vitro. rhGM-CSF stimulated the proliferation of the cultured human osteoblast-like cells, but antagonised the induction by 1,25(OH)2D3 of osteocalcin synthesis and alkaline phosphatase activity, two characteristic products of osteoblasts. rhGM-CSF however, had no appreciable effect on the production of prostaglandin E2, or on the plasminogen activator activity associated with human osteoblast-like cells. These results are the first report of which we are aware of an apparently direct action of GM-CSF on cells of the osteoblast phenotype. These studies indicate that GM-CSF represents another haematological factor that can potentially exert regulatory actions on human osteoblast-like cells. GM-CSF may therefore be a potential paracrine/autocrine regulator of osteoblast activity. 相似文献
8.
Gregory S. Vosganian Jill Waalen Kevin Kim Sejal Jhatakia Ethan Schram Tracey Lee Dan Riddell James R. Mason 《Cytotherapy》2012,14(10):1228-1234
Background aimsThe long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA).MethodsWe randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture.ResultsAn age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity.ConclusionsCryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34+ cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers. 相似文献
9.
E M Mazur J L Cohen L Bogart R A Mufson T G Gesner Y C Yang S C Clark 《Journal of cellular physiology》1988,136(3):439-446
Gibbon interleukin-3 (rIL-3) has recently been cloned and found to have a high degree of homology with the human IL-3 molecule. In this investigation, we evaluated the effects of gibbon rIL-3 on normal human peripheral blood megakaryocyte progenitor cell growth in vitro. Gibbon rIL-3 exhibited substantial megakaryocyte colony stimulatory activity (Meg-CSA), supporting peak colony numbers at a concentration of 1 U/ml. Megakaryocyte colony growth induced by rIL-3 reached 58% of the maximum achieved with the active, Meg-CSA-containing protein fraction of aplastic canine serum. Increasing gibbon rIL-3 concentrations also stimulated a 4-5-fold increase in megakaryocyte colony size and resulted in a decrease in geometric mean megakaryocyte ploidy. Ploidy values fell from 8.5N +/- 1.4 (+/- SEM) at an rIL-3 concentration of 0.1 U/ml to a minimum of 2.9N +/- 0.3 at 10 U/ml. In the presence of rIL-3 at 1.0 U/ml, megakaryocyte colony growth was linear with cell plating density and the regression line passed approximately through the origin. The effects of rIL-3 on megakaryocyte colony growth were independent of the presence of T-lymphocytes in the cultures. Cross-species evaluation of murine and gibbon IL-3 indicated that its bioactivity is species restricted. Murine IL-3 did not support colony growth from human megakaryocyte progenitors and gibbon rIL-3 showed no activity in stimulating acetylcholinesterase production by murine bone marrow cells. Gibbon rIL-3 is a potent stimulator of the early events of human megakaryocyte progenitor cell development promoting predominantly mitosis and early megakaryocytic differentiation. 相似文献
10.
Sarcolectin (SCL) is a tissue growth factor found in various human or animal tissues, functioning in balance with interferons (IFNs) that can inhibit growth and affect cell differentiation. Like somatotropin, SCL is found in the pituitary gland. In humans, the SCL gene is located on chromosome 12 (q12-q13) and expressed as a 55 kDa protein consisting of 469 amino-acids. After a single activation of peripheral blood mononuclear cells (PBMC) obtained from more than 30 individuals, highly significant cell proliferation was found to peak after 7 days in culture. The presence of adherent cells was necessary for cell proliferation. SCL induced over-expression of alpha-IL-2 receptor (CD25) leading to proliferation of CD3+/CD4+/CD45RO+ T cells. Thus in PBMC, SCL induced CD4+ T cell growth and expression of inflammatory cytokine genes, including TNF-alpha, IL-1beta, IL-6 and IL-8. IFNs are also produced following activation as a feedback response which is maintained for about 20 days. 相似文献
11.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells. 相似文献
12.
The radiosensitivity of populations of colony-forming cells (CFC) in murine bone marrow was investigated using different recombinant colony-stimulating factors (CSFs; murine IL-3 and granulocyte-macrophage CSF and human granulocyte CSF), or purified murine macrophage CSF. With unfractionated normal bone marrow the CFC increased in radiosensitivity as they progressed through the granulocyte lineage. The D0 values ranged from 129 +/- 12 cGy for CFC stimulated with GM-CSF down to 42 +/- 2 cGy after stimulation with G-CSF. IL-3 stimulated a CFC population which gave the only survival curve with a shoulder (n = 1.9 +/- 0.3). With semipurified populations of primitive or bipotential CFC, D0 values were generally lower with respect to the equivalent values for unpurified bone marrow (range 62 +/- 7 cGy to 135 +/- 7 cGy). Changes in cluster/colony ratio and colony morphology together possibly with products of accessory cells influence the interpretation of the radiosensitivity parameters. 相似文献
13.
Recombinant human interleukin-3 (rhuIL-3) was assessed for its effects on the growth of normal human hematopoietic bone marrow nucleated cells, and on granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells in a liquid culture system which allows for the prolonged growth of these cells in vitro. RhuIL-3, at concentrations of 100 and 500 units/mL, significantly enhanced the numbers of nucleated cells, as well as the numbers of supernatant and adherent CFU-GM and BFU-E growing in tissue culture flasks or dishes over a period of 4 to 6 weeks. The results demonstrated the rhuIL-3 has a stimulating effect on the growth of human marrow cells in prolonged culture. This information is consistent with the effects of rhuIL-3 in short-term marrow colony assays in vitro and with the in vivo actions of recombinant murine IL-3 in mice, and may be of relevance to clinical trials that will be assessing the hematopoietic effects of rhuIL-3 in humans. 相似文献
14.
We have examined the effects of recombinant immune and leukocyte interferons (rIFN-gamma and rIFN-alpha) on the clonogenic growth of leukemic cells and normal hemopoietic progenitors using in vitro colony assays. Both interferons suppressed the colony formation by granulocyte-macrophage progenitors (CFU-gm) and erythroid progenitors (CFU-e and BFU-e) in a dose-dependent manner. Six myeloid leukemic cell lines were less sensitive to rIFN-gamma than CFU-gm. The colony formation of some myeloid leukemic cell lines was suppressed more potently by rIFN-alpha than by CFU-gm. Four lymphoid leukemic cell lines of the T-cell type were very resistant to both recombinant interferons. Reduced sensitivity of leukemic cells to rIFN-gamma, a possible hemopoietic regulator, may explain partially the unregulated proliferation of leukemic cells in vivo. 相似文献
15.
Kunitake Hirashima Yataro Yoshida Shigetaka Asano Fumimaro Takaku Mitsuhiro Omine Shinpei Furusawa Tsukasa Abe Tatsuo Abe Hiroo Dohy Mitsuaki Tajiri Sumiya Eto 《Biotherapy》1991,3(4):297-307
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) was investigated for its clinical efficacy in the treatment of various types of neutropenia (3 cases with idiopathic neutropenia of suspected drug induction, 5 cases with idiopathic neutropenia of other origin, and 2 cases with cyclic neutropenia). Treatment with glycosylated rhG-CSF produced in the Chinese Hamster Ovary cells at dose levels of 2–5g/kg/day caused rapid increases of neutrophil counts associated with an improvement of the infection. In cyclic neutropenia patients, marked reduction in the duration of the neutropenic period was observed with rhG-CSF administration started before the period. Intercurrent stomatitis, which occurred in 1 patient, was markedly milder as compared to a previous episode which occurred during an untreated neutropenic period.The treatment of rhG-CSF was well tolerated and no adverse events were observed, nor was there any detectable anti-rhG-CSF antibody in any patients studied; hence the clinical use of rhG-CSF is considered to be safe.These results suggest beneficial effects of rhG-CSF on the recovery of neutrophil counts in cyclic and other types of idiopathic neutropenias, as well as for the treatment of neutropenia-associated infection. 相似文献
16.
Protection of 3'-azido-3'-deoxythymidine induced toxicity to murine hematopoietic progenitors (CFU-GM, BFU-E and CFU-MEG) with interleukin-1 总被引:1,自引:0,他引:1
V S Gallicchio M A Doukas B C Hulette N K Hughes C Gass 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1989,192(2):201-204
3'-Azido-3'-deoxythymidine (AZT) has attained wide clinical utility in the treatment of acquired immunodeficiency syndrome (AIDS). Unfortunately, associated with AZT use, is the development of severe hematopoietic toxicity as manifested by anemia, neutropenia and overall bone marrow suppression. Interleukin-1 (IL-1), a cytokine, primarily produced by activated macrophages, has been involved in the control of hematopoiesis by acting synergistically with other hematopoietic growth factors, and has been demonstrated to be an effective agent in reducing the myelosuppression associated with the therapy for malignant disease. We report here the ability of recombinant human IL-1 alpha to protect normal murine hematopoietic progenitors (CFU-GM, BFU-E, and CFU-Meg) from the toxic effects of AZT. Following the determination of the LD50 dose for each progenitor, IL-1 was added in co-culture studies (10-1000 units; 0.001-1.0 micrograms/ml protein) with adherent cell depleted marrow. Marrow progenitors expressed differences in AZT sensitivity, e.g., BFU-E, LD50 5 x 10(-9)M; CFU-Meg, LD50 10(-7) M; CFU-GM, 5 x 10(-5) M respectively. IL-1 inhibited AZT induced toxicity. The maximum IL-1 dose effect was observed for CFU-GM and CFU-Meg at 300 units, 0.3 micrograms protein; however BFU-E required a dose of 600 units, 0.6 micrograms/ml protein to reverse the effects of AZT. These results demonstrate marrow progenitors respond differently to AZT and identifies the potential efficacy of IL-1 to minimize the hematopoietic toxicity associated with AZT treatment. 相似文献
17.
Graziella Bellone Massimo Geuna Anna Carbone Stefania Silvestri Robin Foa Giorgio Emanuelli Lina Matera 《Journal of cellular physiology》1995,163(2):221-231
The pituitary hormone prolactin (Prl) is known to act as a local regulator of immune cell function, and Prl-binding receptors (Prl-R) have been described to share distinctive features with the members of the newly described cytokine/hemopoietin receptor superfamily. Here we show that the hormone can functionally interact with lineage-specific hemopoietic factors. When highly purified progenitor cells (CD34+ve) were seeded in semisolid methylcellulose cultures in the presence of interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), and erythropoietin (Epo), a selective enhancing effect of Prl on the formation of colony forming unit-granulocyte (CFU-G) and burst forming unit-erythroid (BFU-E) colonies was observed. The effect of the hormone was plotted as a bell shaped curve, with the optimal response at the supraphysiological concentration of 50 ng/ml. Limiting dilution analysis showed that Prl acted directly on hemopoietic progenitors. This was confirmed by the observation on the CD34+ve cells of Prl-binding sites reacting with the specific monoclonal antibodies (mAbs), U5 and PrR-7A. Immunoprecipitation of the metabolically labeled CD34+ve cells with the PrR-7A mAb revealed a structure of 43 kD under reducing conditions. Analysis of the early events associated with the Prl/Prl-R interaction showed an increased number of cells engaged in DNA and hemoglobin synthesis. Enhanced erythroid differentiation of CD34+ve cells in the presence of Prl was secondary to upmodulation of receptors for the lineage-specific factor Epo. Together these data demonstrate the existence of a functional interplay between Prl. and hemopoietic factors. © 1995 Wiley-Liss, Inc. 相似文献
18.
Immunodeficiency is a severe side effect of radiation therapy, notably at high radiation doses. It may also impact healthy individuals exposed to environmental ionizing radiation. Although it is believed to result from cytotoxicity of bone marrow cells and of immunocompetent cells in the peripheral blood, the response of distinct bone marrow and blood cell subpopulations following exposure to ionizing radiation is not yet fully explored. In this review, we aim to compile the knowledge on radiation sensitivity of immunocompetent cells and to summarize data from bone marrow and peripheral blood cells derived from mouse and human origin. In addition, we address the radiation response of blood stem and progenitor cells. The data indicate that stem cells, T helper cells, cytotoxic T cells, monocytes, neutrophils and, at a high degree, B cells display a radiation sensitive phenotype while regulatory T cells, macrophages, dendritic cells and natural killer cells appear to be more radioresistant. No conclusive data are available for basophil and eosinophil granulocytes. Erythrocytes and thrombocytes, but not their precursors, seem to be highly radioresistant. Overall, the data indicate considerable differences in radiosensitivity of bone marrow and blood normal and malignant cell populations, which are discussed in the light of differential radiation responses resulting in hematotoxicity and related clinical implications. 相似文献
19.
20.
G E Francis J J Berney W Daniels G Janossy A V Hoffbrand 《International journal of cell cloning》1983,1(3):182-188
A transient increase in terminal deoxynucleotidyl transferase positive (TdT+) cells was observed during the early phase of (less than or equal to day 5) cultures supporting the growth of pluripotent myeloid progenitor cells (CFU-mix). T-cell growth-promoting medium and erythropoietin were not required. The rapidity with which TdT+ cells appeared in cultures and the results of cultures where TdT+ cells were high initially (greater than 800 cells/culture) were not consistent with their having been produced by proliferation of pre-existing TdT+ cells from the bone marrow inoculum. The results suggest production of TdT+ cells from a TdT-negative precursor either by altered enzyme expression or by production of TdT+ progeny. 相似文献