首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional distributions of thyrotrophin-releasing hormone (TRH) and substance P in postmortem human spinal cord were determined by radioimmunoassay in fresh tissue taken from 22 patients who died without known neurological disease. Dorsal, ventral, and intermediolateral spinal cord regions were obtained from different segmental levels (lumbar L1, 2, 3, and 4; thoracic groups T1-3, T4-6, T7-9, and T10-12) together with selective regions of grey matter of lumbar spinal cord. The effects on peptide levels of the age of the patient, the postmortem time interval, and freezing the tissue samples prior to assay were assessed. Levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were determined in regional lumbar and thoracic tissue using HPLC with electrochemical detection. Substance P was found in the highest concentration in the dorsal spinal cord, with no significant segmental differences. In contrast, TRH was present in higher levels in the ventral rather than the dorsal spinal cord, with segmental differences. There was a significant difference in the 5-HT/5-HIAA ratio between dorsal and ventral spinal cord, with the highest ratio in the ventral spinal cord. There were no significant differences in substance P, TRH, or 5-HT levels in spinal cords between 5 and 20 h postmortem or from patients aged between 65 and 90 years. Freezing the tissue (-80 degrees C for 24 h) prior to assay significantly reduced TRH and substance P levels compared to samples assayed immediately without prior freezing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) was measured in selected regions of the cervical, thoracic, and lumbar spinal cord of untreated rabbits and, following intrathecal injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), in the thoracolumbar cord in rats using a sheep antiserum raised against tyrosine0 calcitonin gene-related peptide28-37. In the cervical, thoracic, and lumbar segments of the rabbit spinal cord, CGRP-LI levels were 15-50-fold higher in the dorsal than in the ventral grey region in the same segment. The only segmental variation in CGRP-LI levels was in the dorsal white region, where levels in the thoracic cord were lower than those in cervical or lumbar segments. Within individual spinal segments, the pattern of distribution of CGRP-LI in the rabbit spinal cord was analogous to that in other species previously examined, including rat, human, and cat spinal cord. Intrathecal injection of 5,7-DHT, which caused 85-91% depletion of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid from the thoracolumbar ventral spinal cord, did not affect choline acetyltransferase activity, which is colocalized with CGRP in motoneurones in this spinal cord region. In contrast, intrathecal 5,7-DHT produced a threefold increase in CGRP-LI in the ventral thoracolumbar cord, suggesting that spinal motoneurones selectively increase production of CGRP 10 days after neurotoxin-induced denervation of bulbospinal raphe neuronal input.  相似文献   

3.
T Tashiro  M A Ruda 《Peptides》1988,9(2):383-391
Axons containing both serotonin-like (5-HT)-LI and substance P-like (SP)-LI immunoreactivity were identified in all laminae of the cat spinal cord at the level of the lumbar enlargement. Using an immunologically-specific, double immunofluorescence method, coexistent 5-HT-LI and SP-LI immunoreactivity could be visualized in the same tissue section with appropriate FITC and rhodamine fluorescent filter sets. The fewest number of coexistent axons were observed in the superficial laminae of the dorsal horn, while their number increased in the more ventral dorsal horn laminae. Numerous coexistent axons were observed in the area adjacent to the central canal. The greatest number of coexistent axons was found in the ventral horn, especially in the motoneuronal cell groups. This study demonstrates that axons containing coexistent 5-HT-LI and SP-LI immunoreactivity are found in all laminae of the cat lumbar spinal cord and are thus involved in both sensory and motor functions. Their more frequent occurrence in the ventral horn suggests a greater role for coexistent 5-HT and SP in motor function. Since axons containing coexistent 5-HT and SP, and those containing only 5-HT, likely originate from different populations of neurons, our observations provide evidence for a diverse origin of descending 5-HT afferents to the different spinal laminae.  相似文献   

4.
Serotonergic innervation of the spinal cord in mammals has multiple roles in the control of motor, sensory and visceral functions. In rats, functional consequences of spinal cord injury at thoracic level can be improved by a substitutive transplantation of serotonin (5-HT) neurons or regeneration under the trophic influence of grafted stem cells. Translation to either pharmacological and/or cellular therapies in humans requires the mapping of the spinal cord 5-HT innervation and its receptors to determine their involvement in specific functions. Here, we have performed a preliminary mapping of serotonergic processes and serotonin-lA (5-HT1A) receptors in thoracic and lumbar segments of the human spinal cord. As in rodents and non-human primates, 5-HT profiles in human spinal cord are present in the ventral horn, surrounding motoneurons, and also contact their presumptive dendrites at lumbar level. 5-HT1A receptors are present in the same area, but are more densely expressed at lumbar level. 5-HT profiles are also present in the intermediolateral region, where 5-HT1A receptors are absent. Finally, we observed numerous serotonergic profiles in the superficial part (equivalent of Rexed lamina II) of the dorsal horn, which also displayed high levels of 5-HT1A receptors. These findings pave the way for local specific therapies involving cellular and/or pharmacological tools targeting the serotonergic system.  相似文献   

5.
It is now a recognized principle that various neuropeptides are neuronally co-localized with biogenic amine or aminoacid neurotransmitters. In the rat CNS it has previously been shown that TRH is co-localized with 5-HT (and also with substance P) in cell bodies of the posterior raphe that project to the spinal cord. Although TRH cell bodies are known to be widely distributed throughout the forebrain there is no other known co-localization with 5-HT. In this study we further specify the anatomical relationship of TRH with 5-HT by use of surgical and neurotoxic lesioning with reference to limbic forebrain regions wherein TRH is greatly increased following seizures. In groups of rats, the fimbria-fornix was lesioned alone, or combined with a lesion of the dorsal perforant path or the ventral perforant path. There was a sham lesioned control group. Additional groups were lesioned with 5, 7 dihydroxytryptamine, 100 g i.v.t., 45 min. after i.p. desipramine, 25 mg/kg. All rats were sacrificed three weeks after lesions. Indoleamines were determined by HPLC in left anterior cortex, left pyriform/olfactory cortex, left dorsal hippocampus and left ventral hippocampus. TRH was determined by specific RIA in the corresponding right brain regions. The modal n was 7 rats. The surgical lesions reduced 5-HT to below the detection limit in dorsal hippocampus in all three groups, and to 31–52% of control in all the ventral hippocampus groups. 5-HIAA was reduced to 19–37% of control in dorsal and to 30–51% of control in ventral hippocampus. TRH was reduced to 44–61% of control in dorsal hippocampus and to 48–53% of control in ventral hippocampus. As was repeatedly observed in our previous reports all TRH levels in ventral hippocampus were higher than in dorsal hippocampus. The 5, 7 dihydroxytryptamine treatment nearly eliminated the indoleamines from all the forebrain regions examined while TRH levels were unchanged. These results can be explained by our previous data showing that immunoreactive TRH is intrinsic and localized to the vicinity of both CA and dentate granule cells of the hippocampus, but about half of hippocampal TRH enters via fibers of the fimbria-fornix. The perforant path appears to contribute no TRH to hippocampus, but, results with the combined lesion groups showed some reduction of 5-HIAA in ventral hippocampus as is expected from the known perforant path contribution of 5-HT. Since the neurotoxic lesion had no effect on TRH, the 5-HT pathway through the fimbria-fornix is probably anatomically separate from a parallel TRH pathway there. This study shows that co-localization of TRH with 5-HT is very unlikely in four specific limbic forebrain regions.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

6.
陈钟芳  舒加 《生理学报》1993,45(2):103-110
本文对移植的5-HT神经元从蛛网膜下腔跨软脊膜迁移进入脊髓作了初步研究。将含有5-HT细胞的胚胎中缝核组织小块或神经细胞悬浮液作为移植物,以5-HT免疫组织化学方法跟踪移植细胞,结果如下:(1)在低胸水平横切脊髓,10d后,横断脊髓内的5-HT纤维消失。(2)横切脊髓(方法同上)后,立即将中缝核组织小块移植在胸腰段脊髓的蛛网膜下腔,一月后.在横断脊髓内出现5-HT阳性神经元和纤维。5-HT纤维能在灰白质内延伸。(3)脊髓横断后,若以中缝核的细胞悬浮液代替组织小块,作上述移植,则在移植区附近的灰质内出现大量的5-HT阳性神经元。这些神经元在灰质内的分布范围与神经细胞悬浮液在蛛网膜下腔的移植范围相一致。迁入神经元能在灰质内重新形成5-HT阳性纤维网。(4)经上述移植后,灰质内出现的5-HT阳性纤维随远离细胞体而变得稀疏。白质内的5-HT阳性纤维远比灰质内稀少。本实验结果表明:移植在脊髓蛛网膜下腔的脑干5-HT细胞能跨软脊膜迁移进入脊髓。  相似文献   

7.
Nitric oxide synthase (NOS) activity was studied in the gray and white matter regions of the spinal cord 2 and 5 days after multiple cauda equina constrictions of the central processes of L7-Co5 dorsal root ganglia neurons. The results show considerable differences in enzyme activity in the thoracic, upper lumbar, lower lumbar, and sacral segments. Increased NOS activity was observed at 2 days after multiple cauda equina constrictions in the dorsal, lateral, and ventral columns of the lower lumbar segments and in the ventral column of the upper lumbar segments. The values returned to control levels within 5 postconstriction days. In the lateral columns of thoracic segments taken 2 and 5 days after surgery, NOS activity was enhanced by 54% and 55% and in the upper lumbar segments by 130% and 163%, respectively. Multiple cauda equina constrictions performed surgically for 2 and 5 days caused a significant increase in NOS activity predominantly in the gray matter regions of thoracic segments. A quite different response was found 5 days postconstriction in the upper lumbar segments, where the enzyme activity was significantly decreased in the dorsal horn, intermediate zone, and ventral horn. No such extreme differences could be seen in the lower lumbar segments, where NOS activity was significantly enhanced only in the ventral horn. The data correspond with a higher number of NOS immunoreactive somata, quantitatively evaluated in the ventral horn of the lower lumbar segments at 5 days after multiple cauda equina constrictions. While the great region-dependent heterogeneity in NOS activity seen 2 and 5 days after multiple cauda equina constrictions is quite apparent and suggestive of an active role played by nitric oxide in neuroprotective or neurotoxic processes occurring in the gray and white matter of the spinal cord, the extent of damage or the degree of neuroprotection caused by nitric oxide in compartmentalized gray and white matter in this experimental paradigm would be possible only using longer postconstriction periods.  相似文献   

8.
Abstract: A mass fragmentographic method was used in which homovanillic acid (HVA), methoxyhydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were measured from a single sample. The results describe the effect of morphine on the metabolism of the major monoamines, dopamine (DA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT) in the spinal cord. Morphine has very little effect on the metabolism of DA and NA in the spinal cord. However, morphine causes a significant increase in the metabolism of spinal 5-HT. The increase in 5-HIAA induced by morphine is not restricted to the dorsal horn. The three main functional regions of the cord—dorsal horn (sensory), zona intermedia (autonomic), and ventral horn (somatic motor)—are affected to the same degree. The results indicate that morphine causes a generalized activation of serotonin neurons in the spinal cord. There appears to be little or no selectivity for those serotonergic neurons that innervate the dorsal horn. The results are discussed with reference to current data which indicate a fairly strong link between descending serotonergic nerves and the mechanism of action of morphine-induced analgesia.  相似文献   

9.
Abstract— Experimental hind-limb rigidity of spinal origin was produced in cats by temporary occlusion of thoracic aorta and internal mammary arteries. In the lumbar segments (L6- S1) of these rigid cats, the monosynaptic reflex recorded from ventral roots was enhanced whereas the polysynaptic reflexes as well as the dorsal root reflexes were almost abolished. On morphological examination of the lumbar spinal cord, the number of interneurons was greatly reduced, whereas the small sized cells, presumably glial cells, were increased by about two times. Ventral horn motoneurons were also reduced. The lumbar spinal cords of the rigid cats were analysed for amino acid and substance P contents. Four major amino acids, aspartate, glutamate, glycine and GABA, were definitely reduced in both grey and white matter except that the glutamate level in the dorsal white was within the normal range. Content and distribution pattern of substance P were not altered in the lumbar cord of the rigid cats. These results are consistent with the notions that GABA occurs in the dorsal horn interneurons subserving primary afferent depolarisation, and that substance P is concentrated in primary afferent fibre terminals. The implications of the decrease of aspartate, glutamate and glycine in the spinal cord of rigid cats are discussed.  相似文献   

10.
The possible influence of spinal receptors coupled to Gi/Go regulatory proteins on chronic pain adaptive processes of neural tissues was investigated in normal and arthritic rats. Pain-suffering animals showed an enhanced immunoreactivity to substance P (ir-SP) in the lumbar spinal cord, pons-medulla oblongata region and thalamus. Norepinephrine (NE) levels were increased in the spinal cord, while serotonin (5-HT) was elevated in both spinal cord and midbrain. The intrathecal injection of 1 micrograms pertussis toxin 6 days before sacrifice of rats produced in these arthritic animals a pronounced reduction of ir-SP in the pons-medulla, midbrain and thalamus, but not in the spinal cord. The level of 5-HT was diminished in dorsal spinal cord and midbrain, whereas NE appeared unchanged. In contrast, the toxin only reduced ir-SP of normal rats in the midbrain, without altering the levels of NE or 5-HT, in all the areas analysed. These results suggest the involvement of certain spinal receptors coupled to Gi/Go transducer proteins in processes leading to the elevation of ir-SP and 5-HT in various neural structures of arthritic rats.  相似文献   

11.
应用推挽灌流技术、去甲肾上腺素(NA)放射酶学法和亮-脑啡肽放射免疫法观察不同脑区 NA 和脊髓背角亮-脑啡肽的释放。应用分子筛柱层析分离家兔不同脑区的5-羟色胺(5-HT)和5-羟吲哚乙酸(5-HIAA),并对它们进行荧光微量测定。以此来阐明针刺镇痛时 NA、5-HT 和亮-脑啡肽在下行抑制中的作用。1.家兔电针20 min,痛阈显著提高,此时中脑导水管周围灰质(PAG)和中缝大核(NRM)的 NA 释放显著减少,而 Al 核团和脊髓背角的 NA释放显著增加。2.电针镇痛时,PAG、延脑中缝核区和脊髓的5-HT 和5-HIAA 含量均有显著增加,除 PAG 外,这种增加的出现较 NA 为晚。提示可能在针刺镇痛的下行抑制中,NA 的参予较5-HT 为早。3.针刺镇痛时脊髓背角亮-脑啡肽的释放也明显增加。  相似文献   

12.
Monoamine contents were measured in the cervical spinal cord of patients with multiple system atrophy (MSA) by high-performance liquid chromatography with electrochemical detection. The concentrations of noradrenaline (NA) and its metabolite 4-methyl-4-hydroxyphenylglycol (MHPG) were highest in ventral horn compared with other regions of the spinal cord in controls. Both NA and MHPG contents were reduced in all regions in 4 MSA patients. But in one case (case 5), which did not show an autonomic dysfunction, NA as well as MHPG level was similar to controls. Similarly, the concentrations of 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were highest in ventral horn and reduced in all regions in 4 MSA patients who showed mild motor weakness. In one case (case 5), which revealed clinical motor weakness associated with fasciculation and areflexia and pathological degeneration of ventral horn, 5-HT content showed higher values than controls whereas the 5-HIAA level was lower than controls. These results probably indicate that the cell loss of supraspinal monoaminergic nuclei may be one of the causes responsible for neurological dysfunction such as autonomic failures and motor weakness in MSA.  相似文献   

13.
The P2 contents of nervous tissues from the human, rabbit, guinea pig, and Lewis rat were measured by radioimmunoassay. The ventral spinal roots contained more P2 than any other tissue. Human dorsal roots and peripheral nerves contained 41-65% of the amount in human ventral roots. Human olfactory and optic nerves and brain contained 1.1-2.7%, spinal cord, 2.8%, cranial nerve VIII, 11%, and cerebral grey matter, 0%. The relative amounts in the rabbit nervous system were similar except that the spinal cord contained 20% of the amount in the ventral roots. Qualitative estimates in the guinea pig showed that the spinal roots and peripheral nerves contained more P2 than the spinal cord, and that none was present in the brain. In the Lewis rat, P2 could be detected in the spinal roots and peripheral nerves but not in the CNS. The distribution of P2 in the human nervous system parallels the incidence and severity of lesions in acute polyradiculoneuritis. It also explains the absence of any lesions in the CNS when experimental allergic neuritis is induced in the Lewis rat.  相似文献   

14.
By means of retrograde axonal transport of fluorescent tracers, connections between brainstem respiratory related regions and the spinal cord has been studied in the cat. Neurons at the pneumotaxic center project bilaterally (90% ipsi-, 10% contra-) to cervical and lumbar spinal cord and ipsilaterally to thoracic levels. The ventrolateral nucleus of the tractus solitarius project mainly contralaterally (85%) to cervical levels and only contralaterally to thoracic levels; no efferent projections were found to lumbar levels. The ventral respiratory group showed a great number of neurons projecting to the spinal cord especially from the nucleus retroambiguus. Both nuclei, ambiguus and retroambiguus, project mainly contralaterally (70%) to the spinal cord. The B?tzinger complex showed rather scarce bilateral projections to cervical and only ipsilateral projections to lower cervical, thoracic and lumber levels.  相似文献   

15.
Biochemical mapping of five different peptide-like materials--calcitonin gene-related peptide (CGRP), substance P (SP), Met5-enkephalin (ME), cholecystokinin (CCK), and dynorphin A (1-8) (DYN)--was conducted in the dorsal and ventral zones of the spinal cord at the cervical, thoracic, and lumbar levels in 3-month-old rats 10 days after unilateral dorsal rhizotomy at the cervical level (C4-T2) or after neonatal administration of capsaicin (50 mg/kg s.c.). In control rats, all peptide-like materials were more abundant in the dorsal than in the ventral zone all along the spinal cord. However, in both zones, absolute concentrations of CGRP, SP, ME, and CCK were significantly higher at the lumbar than at the cervical level. Rhizotomy-induced CGRP depletion (-85%) within the ipsilateral dorsal zone of the cervical cord was more pronounced than that due to neonatal capsaicin (-60%), a finding suggesting that this peptide is contained in both capsaicin-sensitive (mostly unmyelinated) and -insensitive (myelinated) primary afferent fibers. In contrast, similar depletions of SP (-50%) were observed after dorsal rhizotomy and neonatal capsaicin treatment, as expected from the presence of SP only in the capsaicin-sensitive small-diameter primary afferent fibers. Although the other three peptides remained unaffected all along the cord by either intervention, evidence for the existence of capsaicin-insensitive CCKergic primary afferent fibers could be inferred from the increased accumulation of CCK (together with SP and CGRP) in dorsal root ganglia ipsilateral to dorsal root sections.  相似文献   

16.
The purpose of this study was to determine whether the 5-hydroxytryptamine7 (5-HT7) receptor is expressed by nociceptor-like neurons in the rat PNS and whether 5-HT activates these nociceptors via the 5-HT7 receptor subtype. Using a polyclonal antibody and the method of immunofluorescence staining, we demonstrated that the 5-HT7 receptor appears predominately on "nociceptor-like" neurons of the rat lumbar dorsal root ganglia. Using immunocytochemical methods, we showed that the immunoreactivity of the 5-HT7 receptor antibody complex is localized in the superficial layers of the spinal cord dorsal horn, which corresponds with laminae I, IIouter and IIinner. Furthermore, we demonstrated that noxious stimulation produced by knee injection of 5-HT or a 5-HT7 agonist dose-dependently increases c-Fos production of the rat spinal cord dorsal horn. This effect was significantly inhibited by the preinjection of a 5-HT7 antagonist. We conclude that the 5-HT7 receptor is expressed by rat primary afferent nociceptors which terminate in the superficial layers of the spinal cord dorsal horn and that the 5-HT7 receptor subtype is involved in nociceptor activation by 5-HT.  相似文献   

17.
Homogenates of rat dorsal or ventral spinal cord were subjected to centrifugation on a continuous density gradient. The gradient was generated according to a new method with the aid of a microprocessor-controlled HPLC pump. The distribution of substance P-like immunoreactivity (SPI) and somatostatin-like immunoreactivity (SRIFI) across the gradient showed two peaks. The SPI peak seen at lower density was found only in dorsal spinal cord tissue. No peak of SPI was seen at this position in homogenates prepared from the spinal cords of capsaicin-pretreated rats. The second peak of SPI, found at a higher density, was accompanied by peaks in the levels of endogenous 5-hydroxytryptamine (5-HT), [14C]glycine, and [3H]norepinephrine uptake. This peak was seen at the same density in the dorsal and the ventral spinal cord. Tissue derived from capsaicin-pretreated rats exhibited one peak of SPI, accompanied by a maximum of [14C]glycine uptake. The uptake of [3H]gamma-aminobutyric acid ( [3H]GABA) was found to have a maximum at a somewhat lower density than that of [14C]glycine. It is concluded that the peak of SPI found at lower density in the dorsal spinal cord is associated with nerve endings belonging to capsaicin-sensitive primary afferents, while other endings, including those also containing 5-HT, are probably associated with the peak of SPI found at higher density.  相似文献   

18.
Somatostatin distribution was measured quantitatively in the rat spinal cord by radioimmunoassay. Rostro-caudally, somatostatin content was about 50% higher in lumbar-sacral cord than in cervical or thoracic levels. The dorso-ventral distribution is more uneven: somatostatin is highest in the dorsal horn, where the peptide is 15 times as concentrated as it is in the ventral white matter, the region of lowest concentration. However, measurable amounts of the peptide were found in all regions studied. Dorsal root ganglionectomy decreased somatostatin levels in the dorsal cord, supporting the previously proposed role for this peptide as a primary sensory neurotransmitter or modulator; but somatostatin content also was decreased both rostral and caudal to spinal transection, indicating the presence of ascending and descending somatostatin pathways within the spinal cord. Brain levels did not change. Met-enkephalin and substance P were also measured after the above surgical manipulations. Met-enkephalin content was not altered and substance P content was lowered significantly only after ganglionectomy. Although this study confirms the primary sensory neuron as the origin of a part of spinal cord somatostatin, it further indicates the presence of ascending and descending somatostatin pathways within the rat spinal cord.  相似文献   

19.
Pyroglutamyl peptidase II (PPII) is a narrow specificity ectoenzyme that degrades thyrotropin-releasing hormone (TRH). We detected the enzyme in the brain of various mammals, with highest specific activity in rabbit brain. In this species, activity was heterogeneously distributed in the central nervous system. There was a 28-fold difference between regions of highest and lowest PPII activity. Enzyme activity was highest in the olfactory bulb and posterior cortex. In the spinal cord, activity was low but unevenly distributed, with highest values detected in the thoracic (T) region. Segments T1 and T2 activities were particularly high. Other organs contained low or undetectable levels of activity. The levels of TRH-like immunoreactivity (TRH-LI) in spinal cord segments were greatest in T3-T4 and lumbar L2-L6. Low concentrations were found in T1 and T9-T12. There was a partial correlation between the distribution of PPII activity and TRH receptors but not with TRH-LI levels. These results demonstrate that PPII is predominantly a central nervous system enzyme, and they support the hypothesis that PPII is responsible for degrading TRH released into the synaptic cleft.  相似文献   

20.
Dogs were made paraplegic by complete mid-thoracic spinal cord transection. The content of glycine, glutamate, aspartate, and γ-aminobutyric acid were determined in ventral and central grey matter from the lumbar enlargement of the spinal cord at 1, 3 and 8 weeks after transection. A rapid decrease in the content of aspartate and glycine accompanied the onset of spasticity. By the eight week post-transection, aspartate and glycine had decreased to less than 50% of control levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号