首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3-Deoxy-d-manno-octulosonate 8-phosphate (KDO8P) synthase catalyses the first committed step in the biosynthesis of 3-deoxy-d-manno-octulosonate (KDO), an important component of the lipopolysaccharide of Gram-negative bacteria. The pathway for KDO biosynthesis has been identified as a potential target of antibacterial drug design. The reaction catalysed by KDO8P synthase is an aldol-like condensation between phosphoenolpyruvate (PEP) and d-arabinose 5-phosphate (A5P) and proceeds through a bisphosphorylated tetrahedral intermediate. In this study a bisphosphate analogue of the tetrahedral intermediate was synthesised and was found to inhibit the metal-dependent KDO8P synthase from Neisseriameningitidis and the metal-dependent KDO8P synthase from Acidithiobacillus ferrooxidans with inhibition constants in the low micromolar range. Additionally, monophosphorylated inhibitors were synthesised to determine the relative importance of the two phosphate groups of this bisphosphate analogue for enzyme inhibition. The removal of either of these two phosphate groups gave less potent inhibitors for both enzymes.  相似文献   

2.
The unusual shikimate oxamic acid analog 3, containing a 3-malonate ether, was synthesized and found to be a potent product-analog inhibitor of EPSP synthase (Ki = 5.2 − 0.2 μM). The potency of 3 confirms that these 3-malonate ethers function as effective 3-phosphate replacements in this system and that the oxamic acid moiety represents an unusual mimetic of the EPSP carboxyvinyl ether group.  相似文献   

3.
The tetrahedral intermediate formed at the active site of 5-enolpyruvoylshikimate-3-phosphate synthase by reaction of shikimate 3-phosphate with phosphoenolpyruvate was isolated, and its properties in solution and in reaction with enzyme were examined. The intermediate was moderately stable at pH 7.0, with a half-life of 45 min, and showed increasing lifetimes with increasing pH (t1/2 greater than 48 h at pH greater than or equal to 12). The intermediate bound to the enzyme rapidly, with a second order rate constant of 5 x 10(7) M-1 s-1. Upon binding to the enzyme, it reacted to form both products (5-enolpyruvoylshikimate 3-phosphate, Pi) and substrates (shikimate 3-phosphate, phosphoenolpyruvate) in proportions predicted by the rate constants defined previously for reactions occurring at the active enzyme site (Anderson, K.S. Sikorski, J.A., and Johnson, K. A. (1988b) Biochemistry 27, 7395-7406). The kinetics of binding and dissociation of stable phosphonate analogs of the tetrahedral intermediate (Alberg, D., and Bartlett, P.A. (1989) J. Am. Chem. Soc. 111, 2337) were also examined. In comparison to the intermediate, the analogs bound to the enzyme 300-10,000 fold more slowly and at least 300-20,000 times mroe weakly. These results clarify the definitions for kinetic competence of enzyme intermediates and call into question the significance of the slow binding of analogs of transition states or enzyme intermediates.  相似文献   

4.
3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAH7P) synthase catalyses the first step of the shikimate pathway for the biosynthesis of aromatic compounds. Enzymes of this pathway have been identified as potential targets for drug design. The reaction catalysed by DAH7P synthase is an aldol condensation between phosphoenolpyruvate (PEP) and d-erythrose 4-phosphate (E4P). In this study inhibitors of DAH7P synthase were prepared which were designed to fit into the binding sites of both PEP and E4P substrates simultaneously. Inhibitors, known to target the PEP binding site, were extended using a C4 linker to include an appropriately placed phosphate group in order to access the phosphate-binding site of E4P. A small increase in inhibition was observed with this modification, and the inhibition results have been rationalised by induced-fit docking.  相似文献   

5.
46 Novel nonsymmetrical aromatic disulfides containing [1,3,4]thiadiazole or [1,3,4]oxadiazole groups were synthesized and their biological activities were evaluated as inhibitors of acetohydroxyacid synthase (AHAS, EC 2.2.1.6). Besides their strong in vitro inhibition against plant AHAS, compounds 3e and 3f also display 80–100% post-emergence herbicidal activities in greenhouse bioassay at 1500 g/ha dosage. The assay of exogenous branched-chain amino acids supplementation on rape root growth of 3e suggests that the herbicidal activity has relationship with AHAS inhibition.  相似文献   

6.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway and is the target of the broad-spectrum herbicide glyphosate. Since the functionality of the shikimate pathway is vital not only for plants but also for microorganisms, EPSPS is considered a prospective target for the development of novel antibiotics. We have kinetically analyzed and determined the crystal structures of Escherichia coli EPSPS inhibited by (R)- and (S)-configured phosphonate analogues of the tetrahedral reaction intermediate. Both diastereomers are competitive inhibitors with respect to the substrates of the EPSPS reaction, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). Remarkably, the (S)-phosphonate (K(iS3P) = 750 nM), whose configuration corresponds to that of the genuine tetrahedral intermediate, is a much weaker inhibitor than the (R)-phosphonate analogue (K(iS3P) = 16 nM). The crystal structures of EPSPS liganded with the (S)- and (R)-phosphonates, at 1.5 and 1.9 A resolution, respectively, revealed that binding of the (R)-phosphonate induces conformational changes of the strictly conserved residues Arg124 and Glu341 within the active site. This appears to give rise to substantial structural alterations in the amino-terminal globular domain of the enzyme. By contrast, binding of the (S)-phosphonate renders the enzyme structure unchanged. Thus, EPSPS may facilitate the tight binding of structurally diverse ligands through conformational flexibility. Molecular docking calculations did not explain why the (R)-phosphonate is the better inhibitor. Therefore, we propose that the structural events during the open-closed transition of EPSPS are altered as a result of inhibitor action.  相似文献   

7.
The first mechanism-based inhibitor of a 3-deoxy-D-arabino heptulosonate 7-phosphate (DAH7P) synthase has been synthesised in 12 steps from D-arabinose, and has been found to be a very slow binding inhibitor of Escherichia coli DAH7P synthase.  相似文献   

8.
A series of novel inhibitors of glucosamine-6-phosphate synthase, analogues of AADP and BADP, have been synthesized and their inhibitory, lipophilic and antifungal properties have been tested. The improvement in lipophilicity has not much affected the antifungal activity of the new compounds. Dipeptides containing norvaline and selected inhibitors have shown substantial activity against S. cerevisiae and C. glabrata and only poor activity against C. albicans strain. These peptides do not seem to be toxic towards human cells.  相似文献   

9.
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the formation of EPSP and inorganic phosphate from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) in the biosynthesis of aromatic amino acids. To delineate the domain-specific function, we successfully isolated the discontinuous C-terminal domain (residues 1-21, linkers, 240-427) of EPSP synthase (427 residues) by site-directed mutagenesis. The engineered C-terminal domains containing no linker (CTD), or with gly-gly (CTD(GG)) and gly-ser-ser-gly (CTD(GSSG)) linkers were purified and characterized as having distinct native-like secondary and tertiary structures. However, isothermal titration calorimetry (ITC), 15N-HSQC, and 31P-NMR revealed that neither its substrate nor inhibitor binds the isolated domain. The isolated domain maintained structural integrity, but did not function as the half of the full-length protein.  相似文献   

10.
As part of our ongoing program devoted to inhibit chitin synthases, we have prepared a novel C-glycosyl nucleoside as metabolically stable substrate analog of UDP-GlcNAc. The synthetic strategy relies on the consecutive coupling of nucleoside and amino C-glycosyl moieties with L-tartaric acid. However, this compound inhibited only weakly chitin synthase I, with an IC(50) value of 20 mM.  相似文献   

11.
Squalene synthase inhibitors are potentially superior hypolipidemic agents. We synthesized novel propylamine derivatives, as well as evaluated their ability to inhibit squalene synthase and their lipid-lowering effects in rats. 1-Allyl-2-[3-(benzylamino)propoxy]-9H-carbazole (YM-75440) demonstrated potent inhibition of the enzyme derived from HepG2 cells with an IC(50) value of 63 nM. It significantly reduced both plasma total cholesterol and plasma triglyceride levels following oral dosing to rats with a reduced tendency to elevate plasma transaminase levels.  相似文献   

12.
The cyclic depsipeptide HUN-7293 (1) and its D-lactate analogue 2 are highly potent inhibitors of inducible cell adhesion molecule expression. We report the synthesis of ether analogues varying in stereochemistry and side chain at the former hydroxyl acid position by employing a 'cut and paste chemistry' methodology starting from 1. As an additional fruit of this synthetic effort, a cyclodepsipeptide featuring a tertiary amine instead of a tertiary amide between PrLEU and MALA was obtained. Results on the inhibitory profile of these compounds in assays of VCAM-1 and ICAM-1 protein expression are discussed.  相似文献   

13.
The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of Alzheimer's disease (AD). In the course of our research topic we synthesized a library of potent GSK-3 inhibitors. We utilized the urea scaffold present in the potent and highly selective GSK-3 inhibitor AR-A014418 (AstraZeneca). This moiety suits both (a) a convergent approach utilizing readily accessible building blocks and (b) a divergent approach based on a microwave heating assisted Suzuki coupling. We established a chromatography-free purification method to generate products with sufficient purity for the biological assays. The structure-activity relationship of the library provided the rationale for the synthesis of the benzothiazolylurea 66 (IC(50)=140 nM) and the pyridylurea 62 (IC(50)=98 nM), which displayed two to threefold enhanced activity versus the reference compound 18 (AR-A014418: IC(50)=330 nM) in our assays.  相似文献   

14.
To investigate the effectiveness of a 2',6'-dimethylphenylalanine (Dmp) residue as an aromatic amino acid surrogate, endomorphin 2 (EM(2): Tyr-Pro-Phe-Phe-NH(2)) analogues were prepared, in which the constitutive aromatic amino acids (Tyr(1), Phe(3), or Phe(4)) were replaced by Dmp or its isomer, D-Dmp. Replacement of Phe(3) by Dmp increased the affinity over 10-fold for both mu- and delta-opioid receptors, without affecting receptor selectivity. In contrast, replacement of Phe(4) considerably reduced the mu-receptor affinity and selectivity. These data indicated that the Dmp-substitution of Phe(3), but not Phe(4), in EM(2) is favorable for improving mu-receptor specificity. Inversion of the chirality of the substituted Dmp residue resulted in marked decrease in the mu-receptor affinity. Replacement of Tyr(1) by Dmp yielded an analogue that exhibited only a limited decrease in mu-receptor affinity and GPI potency, despite the lack of a phenolic hydroxyl group at the N-terminal residue. In contrast, D-Dmp(1)- or Phe(1)-substitution of Tyr(1) resulted in a significant decrease in mu-receptor affinity and GPI potency. These results suggested that the Dmp residue can mimic Tyr(1), which is one of the critical structural elements of opioid peptides.  相似文献   

15.
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase or EPSPS) is best known as the target of the herbicide glyphosate. EPSPS is also considered an attractive target for the development of novel antibiotics since the pathogenicity of many microorganisms depends on the functionality of the shikimate pathway. Here, we have investigated the inhibitory potency of stable fluorinated or phosphonate-based analogues of the tetrahedral reaction intermediate (TI) in a parallel study utilizing class I (glyphosate-sensitive) and class II (glyphosate-tolerant) EPSPS. The (R)-difluoromethyl and (R)-phosphonate analogues of the TI are the most potent inhibitors of EPSPS described to date. However, we found that class II EPSPS are up to 400 times less sensitive to inhibition by these TI analogues. X-ray crystallographic data revealed that the conformational changes of active site residues observed upon inhibitor binding to the representative class I EPSPS from Escherichia coli do not occur in the prototypical class II enzyme from Agrobacterium sp. strain CP4. It appears that because the active sites of class II EPSPS do not possess the flexibility to accommodate these TI analogues, the analogues themselves undergo conformational changes, resulting in less favorable inhibitory properties. Since pathogenic microorganisms such as Staphylococcus aureus utilize class II EPSPS, we conclude that the rational design of novel EPSPS inhibitors with potential as broad-spectrum antibiotics should be based on the active site structures of class II EPSP synthases.  相似文献   

16.
In order to detect covalent reaction intermediates in the 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase reaction, we have investigated the interaction of EPSP synthase with the reaction product EPSP. An exchange of EPSP-methylene protons could be demonstrated by incubating EPSPS with EPSP in D2O. Since trace amounts of contaminating Pi would lead to reversal of EPSPS reaction and hence methylene proton exchange, we added pyruvate kinase, ADP, Mg++ and K+. Under these conditions, any contaminating Pi that is converted to PEP is trapped as ATP. No exchange of EPSP protons with those of the solvent could be detected in the presence of this trap system, suggesting that enzyme-bound EPSP is unable to form a covalent tetrahedral complex. Incorporation of [14C] from [14C]-S3P and [14C]-PEP into EPSP could be detected, but only in the absence of a PEP (or Pi) trap system. This indicates that for the exchange reaction, Pi is required, and also indicates the absence of a covalent intermediate, unless the carboxyvinyl-enzyme-bound S3P is completely restricted from exchange.  相似文献   

17.
We report the synthesis of 3-phenethylazetidine derivatives 2 and their biological activities against 5-HT, NE and DA transporters as well as microsomal stability, CYP inhibition, and hERG inhibition profiles. Compound 2at showed most potent triple reuptake inhibitor with good selectivity as a candidate for depression.  相似文献   

18.
A series of pyrazolone compounds as possible SARS-CoV 3CL protease inhibitors were designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide in which several showed potent inhibition against the 3CL protease. Interestingly, one of the inhibitors was also active against 3C protease from coxsackievirus B3. These inhibitors could be potentially developed into anti-coronaviral and anti-picornaviral agents.  相似文献   

19.
γ-Amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system (CNS). A malfunction of the GABAergic neurotransmission is connected to several neuronal disorders like epilepsy, Alzheimer’s disease, neuropathic pain, and depression. One possibility to enhance GABA levels in the synaptic cleft is to inhibit mGAT1, one of the four known plasma membrane bound GABA transporters, which is considered the most important GABA transporter subtype, being in charge of the removal of GABA from the synaptic cleft after a neuronal impulse. Lipophilic derivatives of nipecotic acid like Tiagabine (Gabitril®), an approved drug used in add-on therapy of epilepsy, are known to inhibit uptake of mGAT1 with high subtype selectivity and affinity. We synthesized new N-substituted nipecotic acid derivatives with a vinyl ether spacer and an unsymmetrical bis-aromatic residue, which carries fluorine substituents at various positions of the aromatic ring-system. The new compounds were characterized with respect to their potency and subtype selectivity as mGAT1 inhibitors.  相似文献   

20.
A small molecule library of N-acyl-substituted 1,2-benzisothiazol-3-one derivatives has been synthesized and evaluated as inhibitors of caspase-3 and -7, in which some of them showed nanomolar potency against caspase-3 and -7 in vitro. Meanwhile, in 10 μM concentration, both compounds 24 and 25 showed significant protection against apoptosis in camptothecin-induced Jurkat T cells system. The docking studies predicted the interactions and binding modes of the synthesized inhibitors in the caspase-3 active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号