首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Calcification of in vitro developed hypertrophic cartilage   总被引:4,自引:0,他引:4  
We have recently reported that dedifferentiated cells derived from stage 28-30 chick embryo tibiae, when transferred in suspension culture in the presence of ascorbic acid, develop in a tissue closely resembling hypertrophic cartilage. Ultrastructural examination of this in vitro formed cartilage showed numerous matrix vesicles associated with the extracellular matrix (C. Tacchetti, R. Quarto, L. Nitsch, D. J. Hartmann, and R. Cancedda, 1987, J. Cell Biol. 105, 999-1006). In the present article we report that the in vitro developed hypertrophic cartilage undergoes calcification. We indicate a correlation between the levels of alkaline phosphatase activity and calcium deposition at different times of development. Following the transfer of cells into suspension culture and an initial lag phase, the level of alkaline phosphatase activity rapidly increased. In most experiments the maximum of activity was reached after 5 days of culture. When alkaline phosphatase activity and 45Ca deposition were measured in the same experiment, we observed that the increase in alkaline phosphatase preceded the deposition of nonwashable calcium deposits in the cartilage.  相似文献   

2.
Summary The ultrastructural localization of alkaline phosphatase (AlP) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. AlP activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

3.
We have developed methodology that enables alkaline phosphatase (ALP) to be histochemically stained reproducibly in decalcified paraffin-embedded bone and cartilage of rodents. Proximal tibiae and fourth lumbar vertebrae were fixed in periodate-lysine-paraformaldehyde (PLP) fixative, decalcified in an EDTA-G solution, and embedded in paraffin. In the articular cartilage of the proximal tibia, ALP activity was localized to the hypertrophic chondrocytes and cartilage matrix of the deep zone and the maturing chondrocytes of the intermediate zone. The cells and matrix in the superficial zone did not exhibit any enzyme activity. In tibial and vertebral growth plates, a progressive increase in ALP expression was seen in chondrocytes and cartilage matrix, with activity being weakest in the proliferative zone, higher in the maturing zone, and highest in the hypertrophic zone. In bone tissue, ALP activity was detected widely in pre-osteoblasts, osteoblasts, lining cells on the surface of trabeculae, some newly embedded osteocytes, endosteal cells, and subperiosteal cells. In areas of new bone formation, ALP activity was detected in osteoid. In the bone marrow, about 20% of bone marrow cells expressed ALP activity. In adult rats, the thickness of the growth plates was less and ALP activity was enhanced in maturing and hypertrophic chondrocytes, cartilage matrix in the hypertrophic zone, and primary spongiosa. This is the first time that ALP activity has been successfully visualized histochemically in decalcified, paraffin-embedded mineralized tissues. This technique should prove to be a very convenient adjunct for studying the behavior of osteoblasts during osteogenesis.  相似文献   

4.
Ochromonas danica cell homogenate can be fractionated by differential centrifugation into chloroplast, mitochondrial, ribosome, lysosomal, plasma membrane and soluble fractions. The plasma membrane fraction was further purified by discontinuous sucrose density gradient centrifugation and was found to be enriched 4–16-fold in the following enzymes: β-galactosidase, acid phosphatase, alkaline phosphatase, 5′-nucleotidase, and (Na+, K+)-ATPase. The role of plasma membrane phosphatase in the phosphate metabolism of plants is discussed.  相似文献   

5.
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.  相似文献   

6.
Chondrocytes of the growth plate are differentiating cells. Their evolution leads to matrix vesicle formation and to cartilage mineralization. This is an in vitro study of the plasma membrane of chondrocytes at two differentiation stages. Differences in protein and glycoprotein components, increased membrane fluidity, and responsiveness to PTH indicate that hypertrophic ("ossifying") chondrocytes possess a plasma membrane widely different from that of resting chondrocytes. Their plasma membrane is particularly enriched in alkaline phosphatase (Mr 70K). Purified matrix vesicles contain the 70K form of alkaline phosphatase, but a 50K species is also detectable, a signal of degradative process. In fact, proteins and glycoproteins of matrix vesicles are less numerous than those of cell plasma membranes. It is suggested that, in vivo, matrix vesicle formation may be mediated by Ca2(+)-activated neutral proteases.  相似文献   

7.
Summary Study of the deep articular cartilage and adjacent calcified cartilage has been limited by the lack of an in vitro culture system which mimics this region of the cartilage. In this paper we describe a method to generate mineralized cartilagenous tissue in culture using chondrocytes obtained from the deep zone of bovine articular cartilage. The cells were plated on Millipore CMR filters. The chondrocytes in culture accumulated extracellular matrix and formed cartilagenous tissue which calcified when β-glycerophosphate was added to the culture medium. The cartilagenous tissue generated in vitro contains both type II and type X collagens, large sulfated proteoglycans, and alkaline phosphatase activity. Ultrastructurally, matrix vesicles were seen in the extracellular matrix. Selected area electron diffraction confirmed that the calcification was composed of hydroxyapatite crystals. The chondrocytes, as characterized thus far, appear to maintain their phenotype under these culture conditions which suggests that these cultures could be used as a model to examine the metabolism of cells from the deep zone of cartilage and mineralization of cartilagenous tissue in culture.  相似文献   

8.
The quadratojugal (QJ) is a neural crest-derived membrane bone in the maxillary region of the avian head.In vivoits periosteum undergoes both osteogenesis to form membrane bone and chondrogenesis to form secondary cartilage. This bipotential property, which also exists in some other membrane bones, is poorly understood. The present study used cell culture to investigate the differentiation potential of QJ periosteal cells. Three cell populations were enzymatically released from QJ periostea and plated at different densities. Cell density greatly affected phenotypic expression and differentiation pathways. We found two culture conditions that favored osteogenesis and chondrogenesis, respectively. In micromass culture, the periosteal cells produced a layer of osteogenic cells that expressed alkaline phosphatase (APase) and secreted bony extracellular matrix (ECM). In contrast, low-density monolayer culture elicited chondrogenesis. Cells with pericellular refractile ECM and round shape appeared at 7 to 8 days and formed colonies later. The chondrogenic phenotype of these cells was confirmed by immunolocalization of type II collagen and Alcian blue staining of ECM. This result demonstrated that a fully expressed chondrogenic phenotype can be achieved from membrane bone periosteal cells in primary monolayer culture. Chondrogenesis requires a cell density lower than confluence and cannot be initiated in confluent cultures. Among the three cell populations, those cells from the outer layer have the highest growth rate and require the lowest initial plating density (below 5 × 103cells/ml) to achieve chondrogenesis. Cells from the inner layer have the slowest growth rate and chondrify at the highest initial density (below 5 × 104cells/ml). Chondrocytes from all populations express distinct phenotypic markers—APase and type I collagen—from initial chondrogenesis, but are not hypertrophic morphologically. Furthermore, the fact that chondrocytes arise within the same colony as APase-positive polygonal cells suggests that chondrocytes may differentiate from precursors related to the osteogenic cell lineage. This cell culture approach mimics secondary cartilage and membrane bone formationin vivo.  相似文献   

9.
Epiphyseal cartilage was fractionated into subcellular components by non-enzymatic methods, and analyzed for activity of marker enzymes, for phospholipids, and for calcium and inorganic phosphate. Alkaline phosphatase, a marker enzyme for matrix vesicles and plasma membranes, was concentrated in the 100 000 × g (microsomal) pellet and, upon subsequent frationalism, in the low-density fractions from the sucrose gradient. Mitochondrial and endoplasmic reticular enzymes were localized primarily in the 20 000 × g pellet, lysosomal enzymes predominantly in the supernate from the microsomal pellet. Two phospholipids characteristic of matrix vesicles, sphingomyelin and phosphatidylserine, were enriched in the low-density sucrose fractions; however, unlike matrix vesicles, there was no depletion in phosphatidylcholine or increase in lysophospholipids. Ca and inorganic P were concentrated in the higher-density fractions, the amounts in the lower-density fractions being some- what lower than those seen in matrix vesicles. The alkaline phosphatase-rich, low-density fractions were thus not identical to matrix vesicles isolated by collagenase digestion, but rather appear to be composed primarily of plasma membranes. Enzyme profiles indicate they were relatively free of mitochondrial, endoplasmic reticular and lysosomal contaminants. The data further indicate that significant modification of the phospholipid, electrolyte, and possibly enzyme content of chondrocyte plasma membranes, must occur during blebbing and matrix vesicle formation.  相似文献   

10.
Previous studies have shown 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-responsive alkaline phosphatase in cultured growth zone cartilage chondrocytes is localized in extracellular matrix vesicles (MV). Since osteoblast-like cells also have 1,25-(OH)2D3-responsive alkaline phosphatase, this study determined whether the 1,25-(OH)2D3-responsive enzyme activity is localized to MV produced by these cells as well. Osteoblast-like cells from rat (ROS 17/2.8), mouse (MC 3T3), human (MG 63), and rat growth zone cartilage were cultured in Dulbecco's modified Eagle's medium containing 10(-7)-10(-12) M 1,25-(OH)2D3. Alkaline phosphatase total activity and specific activity were measured in the cell layer, MV, and plasma membrane (PM) fractions. MV and PM purity were verified by electron microscopy and MV alkaline phosphatase specific activity compared to PM (MV versus PM: ROS 17/2.8 6 x; MG 63, 5.5 x; MC 3T3, 33 x; GC, 2 x). There was a dose-dependent stimulation of MV alkaline phosphatase (5- to 15-fold increase at 10(-7)-10(-9) M) in all cell types in response to the 1,25-(OH)2D3. The PM enzyme was stimulated in a parallel fashion in the osteoblast cultures. No effect of 1,25-(OH)2D3 was observed in growth cartilage PM. Although MV accounted for less than 20% of the total activity they contributed 50% of the increase in alkaline phosphatase activity in the cell layer in response to 1,25-(OH)2D3 and MV specific activity was enriched 10 times over that of the cell layer. These are common features of MV produced by cells which calcify their matrix and suggest that hormonal regulation of MV enzymes may be important in primary calcification.  相似文献   

11.
Summary Cultures of osteoblastlike cells obtained from the endosteal surfaces of rabbit long bones formed and mineralized an extracellular matrix when they were supplied daily with medium containing fresh ascorbate. No matrix formed without this supplementation. The matrix mineralized whether or not beta-glycerophosphate, a substrate of alkaline phosphatase, was added to the medium. The ion-transporting ATPase activities of untreated, ascorbate-treated, and ascorbate plus beta-glycerophosphate-treated cells were measured. Ascorbate-treated and ascorbate plus beta-glycerophosphate-treated cells had similar enzyme activities. The activities of the Ca2+-ATPase; Ca2+,Mg2+-ATPase; and alkaline phosphatase in treated cells were elevated over the activities in untreated cells. Na+,K+-ATPase activity was lower in treated than in untreated cells. HCO3 -ATPase activity was not changed by treatment. Alkaline phosphatase activity was 20 times higher in freshly isolated osteoblastlike cells than in cells grown to confluence in primary culture. In addition, subculturing further reduced the activity of this osteoblast-marker enzyme. The activities of the ion-transporting ATPases and alkaline phosphatase in second passage cells were similar to the activities of these enzymes in fresh, noncalcifying tissues. Nevertheless, second passage cells retain the ability to mineralize an extracellular matrix, and their ion-transporting ATPase and alkaline phosphatase activities are altered when the cells mineralize a matrix. This work was supported by Grant NAG-2-108 from the National Aeronautics and Space Administration, Washington, D.C., and Grant 5 PO1 NS15767 from the National Institute of Neurological and Communicative Disorders and Stroke, Bethesda, MD.  相似文献   

12.
Matrix vesicles (MV) can be readily isolated from culture media of chicken growth plate hypertrophic chondrocytes grown in primary culture. The chondrocytes maintain normal morphology and synthesize type II collagen throughout the culture period. The culture-derived MV are morphologically indistinguishable from MV seen in situ and are rich in alkaline phosphatase. Formation of alkaline phosphatase-rich MV is strongly influenced by the stage of culture: large numbers are released shortly after cell seeding; marked decline is seen during cell spreading and rapid cell division; notable resurgence in alkaline phosphatase-rich MV production occurs as the cells attain confluency. Increasing the initial chondrocyte seeding density proportionately increases MV production. Cells derived from the hypertrophic region are much more capable of forming alkaline phosphatase-rich MV than those from the proliferating zone, indicating that MV formation is dependent on cellular differentiation. MV released by the cultured chondrocytes were compared in protein and phospholipid composition and in their ability to accumulate mineral ions, with plasma membrane fractions and collagenase-released MV obtained from the same tissue. Electrophoretic patterns of proteins, and the phospholipid profiles, suggest that significant modification of the plasma membrane occurs during MV formation. The vesicles are capable of accumulating large amounts of mineral ions from a metastable synthetic cartilage lymph when supplied with alkaline phosphatase substrates. This culture system thus appears to be a useful model for isolating native MV and characterizing factors required for vesicle formation and mineralization.  相似文献   

13.
Mandibular condyles of fetal mice 19 to 20 days in utero comprising clean cartilage and its perichondrium were cultured for up to 14 days, and their capacity to develop osteoid and to mineralize in vitro was examined. After 3 days in culture the cartilage of the mandibular condyle appeared to have lost its inherent structural characteristics, including its various cell layers: chondroprogenitor, chondroblastic, and hypertrophic cells. At that time interval no chondroblasts could be seen; instead, most of the cartilage consisted of hypertrophic chondrocytes. By that time, the surrounding perichondrium, which contains pluripotential mesenchymal stem cells, revealed the first signs of extracellular matrix enclosing type I collagen, bone alkaline phosphatase, osteonection, fibronectin, and bone sialoprotein as demonstrated by immunofluorescent techniques. Electron microscopic examinations of the newly formed matrix revealed foci of mineralization within and along collagen fibers as is normally observed during bone development. The composition of the latter mineral deposits resembled calcium pyrophosphate crystals. Following 14 days in culture larger portions of the condyle revealed signs of osseous matrix, yet the tissue reacted positively for type II collagen. Hence, the condylar cartilage, a genuine representative of secondary-type cartilage, elaborated in vitro a unique type of bone that would be most appropriately defined as chondroid bone. Biochemical assays indicated that the de novo formation of chondroid bone was correlated with changes in alkaline phosphatase activity and 45Ca incorporation. The findings of the present study imply that mesenchymal stem cells that ordinarily differentiate into cartilage possess the capacity to differentiate into osteogenic cells and form chondroid bone.  相似文献   

14.
This study examined the effects of 17-beta-estradiol (E2) on chondrocyte differentiation in vitro. Cells derived from male or female rat costochondral growth zone and resting zone cartilage were used to determine whether the effects of E2 were dependent on the stage of chondrocyte maturation and whether they were sex-specific. [3H]-incorporation, cell number, alkaline phosphatase specific activity, and percent collagen production were used as indicators of differentiation. Alakaline phosphatase specific activity in matrix vesicles and plasma membranes isolated from female chondrocyte cultures was measured to determine which membrane fraction was targeted by the hormone. Specificity of the E2 effects was assessed using 17-alpha-estradiol. The role of fetal bovine serum and phenol red in the culture medium was also addressed. The results demonstrated that E2 decreases cell number and [3H]-incorporation in female chondrocytes, indicating that it promotes differentiation of these cells. Alkaline phosphatase specific activity is stimulated in both growth zone and resting zone cells, but the effect is greater in the less mature resting zone chondrocytes. The increase in enzyme activity is targeted to the matrix vesicles in both cell types, but the fold increase is greater in the growth zone cells. In male chondrocytes, there was a decrease in [3H]-incorporation at high E2 concentrations in resting zone cells at the earliest time point examined (12 hours) and a slight stimulation in alkaline phosphatase activity in growth zone cells at 24 hours. Cells cultured in serum-free medium exhibited a dose-dependent inhibition in alkaline phosphatase activity when cultured with E2, even in the presence of phenol red. E2-stimulation of enzyme activity is seen only in the presence of serum, suggesting that serum factors are also necessary. E2 increased percent collagen production in female cells only; the magnitude of the effect was greatest in the resting zone chondrocyte cultures. The results of this study indicate that the effects of E2 are dependent on time of exposure, presence of serum, and the sex and state of maturation of the chondrocytes. E2-stimulation of alkaline phosphatase specific activity is targeted to matrix vesicles. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Summary Chondrocytes isolated from the proliferative and differentiating zones of 3-wk-old chick growth plates were cultured in the presence of 10% fetal bovine serum (FBS) and ascorbic acid for up to 21 d in a high cell density culture within Eppendorf tubes. The proliferative, differentiating, and calcification properties of the chondrocytes were examined by immunolocalization and by enzyme histochemical and biochemical methods. The cells maintained a chondrocyte phenotype throughout culture: they were round in shape and synthesized both collagen type II and proteoglycans. The expression of a hypertrophic phenotype was evident by Day 3 of culture and from this time onwards characteristics of terminal differentiation were observed. The cells were positive for both alkaline phosphatase (ALP) activity and c-myc protein and the surrounding matrix stained strongly for collagen type X. Small foci of mineralization associated with individual chondrocytes were first evident by Day 6 and more widespread areas of mineralization occupying large areas of matrix were present by Day 15. Mineralization occurred without the addition of exogenous phosphate to the medium. This culture system displays characteristics that are similar in both morphological and developmental terms to that of chick chondrocyte differentiation and calcification in vivo and therefore offers an excellent in vitro model for endochondral ossification.  相似文献   

16.
The present study aimed to describe the ultrastructural localization of alkaline phosphatase (AP) activity in articular-epiphyseal growth cartilage of the commercial pig and the minipig of wild hog ancestry, comparing areas with a normal endochondral ossification with those where the calcification of the matrix is insufficient, as in osteochondrotic cartilage. Intense AP activity was primarily present in the cytoplasm, the plasmalemmae, the long cellular processes and the matrix vesicles budding off from proliferative and hypertrophic chondrocytes in those areas of cartilage where normal calcification appeared. In the osteochondrotic cartilage, the only detectable AP activity was restricted to a few morphologically viable hypertrophic cells in the surroundings of the lesion. The lack of AP activity could partially explain the insufficient calcification of the osteochondrotic cartilage.  相似文献   

17.
The ultrastructural localization of alkaline phosphatase (A1P) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. A1P activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

18.
Summary The resorbing region of uncalcified cartilage in the tibia of embryonic chick was studied using 3H-proline autoradiography, histochemistry, and horseradish-peroxidase tracers.At the cartilage-bone marrow interface, two kinds of cells (A and B) were identified. Type-A cells were elongated, contacted the matrix of the uncalcified cartilage directly, and possessed extensive rough endoplasmic reticulum, one or two juxtanuclear Golgi apparatus and cell membranes exhibiting prominent alkaline phosphatase activity. Type-B cells were round to oval, mononucleate (occasionally binucleate), and contained abundant mitochondria, vacuoles and vesicles, well-developed Golgi apparatus, and lysosomes. The lysosomes and the majority of vacuoles and Golgi lamellae of these cells showed prominent acid phosphatase activity. Type-B cells accumulated more horseradish-peroxidase reaction product in their vacuoles and vesicles than type-A cells. Thick, banded collagen fibrils were occasionally found in the matrix of the resorbing surface. 3H-proline autoradiography revealed small numbers of grains at the cartilage-bone marrow interface.These findings suggest that type-A cells have osteoblastic and type-B cells osteoclastic properties and are precursor cells of osteoblasts and osteoclasts, respectively. The appearance of a mineral phase in the resorbing cartilage is probably important for the differentiation of these cells.  相似文献   

19.
《The Journal of cell biology》1994,126(5):1311-1318
Epiphyseal chondrocytes cultured in a medium containing 10% serum may be maintained as three dimensional aggregates and differentiate terminally into hypertrophic cells. There is an attendant expression of genes encoding type X collagen and high levels of alkaline phosphatase activity. Manipulation of the serum concentration to optimal levels of 0.1 or 0.01% in this chondrocyte pellet culture system results in formation of features of developing cartilage architecture which have been observed exclusively in growth cartilage in vivo. Cells are arranged in columns radiating out from the center of the tissue, and can be divided into distinct zones corresponding to the recognized stages of chondrocyte differentiation. Elimination of the optimal serum concentration in a chemically defined medium containing insulin eliminates the events of terminal differentiation of defined cartilage architecture. Chondrocytes continue to enlarge into hypertrophic cells and synthesize type X collagen mRNA and protein, but in the absence of the optimal serum concentration, alkaline phosphatase activity does not increase and the cells retain a random orientation. Addition of thyroxine to the chemically defined medium containing insulin and growth hormone results in dose-dependent increases in both type X collagen synthesis and alkaline phosphatase activity, and reproduces the optimal serum-induced morphogenesis of chondrocytes into a columnar pattern. These experiments demonstrate the critical role of thyroxine in cartilage morphogenesis.  相似文献   

20.
A plasma membrane-enriched fraction (fraction 1B) has been obtained from rat aortic myocytes grown in primary culture. Plasma membrane markers, 5′-nucleotidase and ouabain-sensitive (Na+ + K+)-ATPase, are enriched 4.1- and 8.7-fold, respectively, in this fraction. Although endoplasmic reticulum marker NADPH-cytochrome c reductase is the most enriched in mitochondrial and heavy sucrose density gradient fractions, substantial enrichment of this marker is also observed in membrane fraction 1. This membrane preparation therefore contains a certain quantity of endoplasmic reticulum. Cytochrome c oxidase is de-enriched by a factor of 0.04 in fraction 1, indicating that it is essentially clear of mitochondrial contamination. Homogenization of aortic media-intima layers using a whole-tissue technique induces greater disruption of mitochondria and subsequent contamination of membrane fractions than does the procedure for cell disruption. Analysis of electrophoretic gels, vesicle density distribution and electron micrographs of enriched membrane fractions provide evidence that plasma membrane enriched from cultured myocytes is less traumatized than comparable fractions obtained from intact tissue. The potential value of such a highly enriched, minimally disrupted plasma membrane preparation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号