首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The composition of nuclear DNA in 3 Vicia species are compared. The species V. eriocarpa, V. johannis and V. melanops are from three separate subgeneric sections of Vicia and show a fourfold variation in their amounts of nuclear DNA. DNA melting experiments, buoyant density gradient analysis and Cot reassociation experiments show that the quantitiative change in nuclear DNA between the three species is achieved by changes in the amounts of both repetitive and nonrepetitive DNA sequences. It is suggested that while the increase in the repetitive fraction is achieved by the proliferation of repetitive base sequences the increase in the nonrepetitive fraction is due to the steady accretion of highly diverged base sequences resulting from mutations, deletions, insertions and base sequence rearrangements among families of repetitive sequences.  相似文献   

2.
We present an in-depth study of theTy1-copia group of retrotransposons within the plant genusVicia, which contains species with widely differing genome sizes. We have compared the numbers and sequence heterogeneities of these genetic elements in three diploidVicia species chosen to represent large (V. faba, 1C=13.3 pg), medium (V. melanops, 1C=11.5 pg) and small (V. sativa, 1C=2.3 pg) genomes within the genus. The copy numbers of the retrotransposons are all high but vary greatly, withV. faba containing approximately 106 copies,V. melanops about 1000 copies andV. sativa 5000 copies. The degree of sequence heterogeneity ofTy1-copia group elements correlates with their copy number within each genome, but neither heterogeneity nor copy number are related to the genome size of the host. In situ hybridization to metaphase chromosomes shows that the retrotransposons inV. faba are distributed throughout all chromosomes but are much less abundant in certain heterochromatic regions. These results are discussed in the context of plant retrotransposon evolution.  相似文献   

3.
The DNA composition and the in situ hybridization of satellite fractions were analysed in the New World camelids llama, alpaca, guanaco and vicuña. In the four camelid forms, it was possible to identify a similar main band DNA and five satellite fractions (I–V) with G+C base contents ranging from 32% to 66%. Satellites II–V from llama were in situ reannealed on chromosomes from the four camelid forms. The results obtained were: (a) the four satellites hybridized with regions of C-banding (centromeric regions of all chromosomes and short arms of some autosomes); (b) in general, homologous hybridizations (llama DNA versus llama chromosomes) were more efficient than heterologous reassociations; there were however three exceptions to this rule (vicuña and alpaca satellite fraction II, chromosome group B; vicuña fraction V, chromosome groups A and B); (c) X chromosomes from the four camelids had satellites III–V but lacked satellite II, (d) no satellite fraction was detected on chromosome Y. The analysis of the in situ hybridization patterns allowed to conclude that most or all C-banded chromosome regions comprise several satellite DNA fractions. It is, moreover, proposed that there is an ample interspecies variation in the number of chromosomes that cross-react with a given satellite fraction. Our data give further support to the close genomic kinship of New World camelids.  相似文献   

4.
Two different satellite DNAs exist in the genus Cucurbita which are different with respect to repeat length (350 by and 170 bp), array size, and sequence homogenization. Whereas the 350-bp satellite DNA is prominent and very homogeneous in all species investigated except for C. maxima and C. lundelliana, the 170-bp satellite is rather evenly distributed in all species. In C. maxima and C. lundelliana the 350-bp satellite is present only in small amounts, but detectable by the sensitive PCR method. These repeats are also very homogeneous, reflecting a silent stage of satellite DNA. In contrast, the 170-bp satellite DNA is intra- and interspecifically heterogeneous. It is striking that the species with no detectable amount of 350-bp satellite contain 170-bp satellite DNA clusters with the highest degree of homogeneity. The evolution of satellite DNA repeats within cultivated and wild species in the genus Cucurbita is elucidated using the sequence data of both satellite DNAs from all species investigated. The value of satellite DNA for phylogenetic analysis between closely related species is discussed. Correspondence to: V. Hemleben  相似文献   

5.
Karyotypic and cytogenetic characteristics of Vimba vimba and V. elongata were investigated using differential staining techniques (sequential C-banding, Ag- and CMA3-staining) and fluorescent in situ hybridization (FISH) with 28S rDNA probe. The diploid chromosome number in both species was 2n = 50 with 8 pairs of metacentrics, 14 pairs of submetacentrics to subtelocentrics and 3 pairs of subtelo- to acrocentrics. The largest chromosome pair of the complements was characteristically subtelo- to acrocentric. The nucleolar organizer regions (NORs) in both species were detected in the telomeres of a single, middle-sized subtelocentric chromosome pair, a pattern common in a number of other Leuciscinae. FISH with rDNA probe produced consistently positive hybridization signals detected in the same regions indicated by Ag-staining and CMA3-fluorescence. The distribution of C-positive heterochromatin was identical in both species, including a conspicuous size polymorphism of heterochromatic blocks in the largest metacentric and subtelo- to acrocentric chromosomal pairs. No heteromorphic sex chromosomes were detected. A single analyzed individual of V. melanops possessed the same karyotype and NOR phenotype as V. vimba and V. elongata. The apparent karyotype homogeneity and chromosomal characteristics of ribosomal DNA in all three species of the genus Vimba is consistent to that found in most other representatives of the European leuciscine cyprinid fishes.  相似文献   

6.
A modified DNA microarray-based technique was devised for preliminary screening of short fragment genomic DNA libraries from three Vicia species (V. melanops, V. narbonensis, and V. sativa) to isolate representative highly abundant DNA sequences that show different distribution patterns among related legume species. The microarrays were sequentially hybridized with labeled genomic DNAs of thirteen Vicia and seven other Fabaceae species and scored for hybridization signals of individual clones. The clones were then assigned to one of the following groups characterized by hybridization to: (1) all tested species, (2) most of the Vicia and Pisum species, (3) only a few Vicia species, and (4) preferentially a single Vicia species. Several clones from each group, 65 in total, were sequenced. All Group I clones were identified as rDNA genes or fragments of chloroplast genome, whereas the majority of Group II clones showed significant homologies to retroelement sequences. Clones in Groups III and IV contained novel dispersed repeats with copy numbers 102–106/1C and two genus-specific tandem repeats. One of these belongs to the VicTR-B repeat family, and the other clone (S12) contains an amplified portion of the rDNA intergenic spacer. In situ hybridization using V. sativa metaphase chromosomes revealed the presence of the S12 sequences not only within rDNA genes, but also at several additional loci. The newly identified repeats, as well as the retroelement-like sequences, were characterized with respect to their abundance within individual genomes. Correlations between the repeat distributions and the current taxonomic classification of these species are discussed.  相似文献   

7.
Summary. Nuclear DNA contents, automated karyotype analyses, and sequences of internal transcribed spacers from ribosomal genes have been determined in the species belonging to section Hypechusa of the subgenus Vicia. Karyomorphological results and phylogenetic data generated from the comparison of rDNA (genes coding for rRNA) sequences showed that sect. Hypechusa is not monophyletic; however, some monophyletic units are apparent (one including Vicia galeata, V. hyrcanica, V. noeana, and V. tigridis, another including V. assyriaca, V. hybrida, V. melanops, V. mollis, and V. sericocarpa), which partly correspond to morphology-based infrasectional groups. The relationships among these species and the species in sections Faba, Narbonensis, Bithynicae, and Peregrinae have been also investigated. Correspondence and reprints: Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, via San Camillo de Lellis, 01100 Viterbo, Italy.  相似文献   

8.
Summary DNA sequences reassociating within a Cot value of 1.8×10–1 and those producing a light satellite in a CsCl density gradient were isolated fromVicia faba DNA and hybridizedin situ on squashes of roots of the same species. Silver grains were seen to be scattered over both the interphase nuclei and the metaphase chromosomes after hybridization with fast renaturing DNA sequences, indicating these are fairly regularly interspersed in theV. faba genome. Clustered labeling occurred after hybridization with satellite DNA sequences, indicating these are clustered in the genome. The localization of satellite DNA in chromosomes appeared to correspond closely to the position of the bright bands detectable after staining with quinacrine mustard. After hybridization with both DNA probes, labeling intensity over the nuclei of meristematic cells was higher than that over the nuclei of differentiating and/or differentiated cells. These results are discussed in relation to the structure of the cell nucleus, the mechanism of quinacrine banding and to previous data suggesting underrepresentation of nuclear repeated DNA sequences in differentiatingV. faba root cells.  相似文献   

9.
Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.  相似文献   

10.
Summary The AT-rich highly repeated satellite DNA of Cucurbita pepo (zucchini) and Cucurbita maxima (pumpkin) were cloned and their DNA structure was investigated. DNA sequencing revealed that the repeat length of satellite DNA in Cucurbita pepo is 349–352 base pairs. The percentage of AT-base pairs is about 61%. This satellite is highly conserved in restriction enzyme pattern and DNA sequence; sequence heterogeneity is about 10%. In contrast, the satellite DNA of Cucurbita maxima has a repeat length of 168–169 base pairs. This satellite is also rich in AT-base pairs (64%), existing in at least three different variants as revealed by restriction enzyme analysis and DNA sequencing. The sequence heterogeneity between these variants is about 15%. The two satellite DNAs showed no cross-hybridization to each other and sequence homology is only limited. Nevertheless, we found in the C. pepo genome a high amount of sequences resembling the satellite of C. maxima. In contrast, the satellite repeat of C. pepo is found in the C. maxima DNA only in a few copies. These observations were discussed with respect to satellite DNA evolution and compared to the data received from monocotyledonous species.  相似文献   

11.
Three major satellite DNAs comprise 40–45% of the genome of Drosophila virilis. Since these satellites are not substrates for most restriction enzymes, we were able to digest D. virilis nuclei with HaeIII and micrococcal nuclease and isolate chromatin fractions containing variable levels of satellite DNA. Electrophoretic analysis of these chromatin fractions revealed that the level of the acid-soluble chromosomal protein, cp17.3, was directly related to the percentage of satellite DNA in chromatin. The correlation between cp17.3 and satellite DNA abundance suggests that cp17.3 is involved in the heterochromatic condensation of satellite DNAs. cp17.3 occurs at a frequency of one molecule per 10–20 nucleosomes. It is detected in an electrophoretically distinguishable class of mononucleosomes, provisionally identified as MN1uH2A, which contains ubiquitinated histone H2A (uH2a) but lacks histone H1. It is not detected in MN1, a second class of mononucleosomes, which lacks uH2A and H1. Since cp17.3 is correlated with satellite DNAs and present in nucleosome cores, it might be a histone variant specifically associated with satellite DNAs.This work was supported by Grant GM22138 from the National Institutes of Health. G.A.V. was a predoctoral trainee supported by Grant GM07094 from the National Institutes of Health.  相似文献   

12.
Saito Y  Edpalina RR  Abe S 《Genetica》2007,131(2):157-166
Satellite DNA clones with a 37 bp repeat unit were obtained from BglII-digested genomic DNA of Masu salmon (Oncorhynchus masou) and Chum salmon (O. keta). Fluorescence in situ hybridization (FISH) analysis with the isolated clones as a probe showed that these repetitive sequences were localized in the telomeric regions of chromosomes in both species. Southern and dot blot analyses suggested conservation of homologous sequences with similar repeat unit in other salmonids including the species of the genus Oncorhynchus and Salvelinus, but lack or scarcity of such sequences in the genus Hucho and Salmo. Similarly, polymerase chain reaction (PCR)-based cloning of satellite DNA referring to a reported Rainbow trout (O. mykiss) centromeric sequence was successful for the Oncorhynchus, Salvelinus and Hucho species. The obtained satellite DNA clones were localized with FISH in the centromeric regions of chromosomes of the species from these three genera. Although PCR cloning of the centromeric satellite DNA had failed in the Salmo species due to some base changes in the priming sites, dot blot hybridization analysis suggested conservation of homologous satellite DNA in the genus Salmo as in the other three genera. In the neighbor-joining tree of cloned centromeric satellite DNA sequences, the genus Oncorhynchus and Salvelinus formed adjacent clades, and the clade of the genus Hucho included the reported centromeric sequence of the genus Salmo. Conservation pattern and molecular phylogeny of the telomeric and centromeric satellite DNA sequences isolated herein support a close phylogenetic relationship between the genus Oncorhynchus and Salvelinus and between the Salmo and Hucho.  相似文献   

13.
Buoyant density gradient analysis of nuclear DNA of fourCucumis species showed asymmetric profiles indicating the presence of satellite DNA sequences in the nuclear genome. A highly repeated satellite DNA sequence was isolated from the nuclear genome ofC. metuliferus under neutral CsCl gradients. The satellite DNA constitutes about 4.96% of total nuclear DNA and has 48.06% guanine plus cytosine content. The kinetic complexity of satellite DNA is 150 times smaller than T4 phage DNA and the base sequence divergence is low.3H-labeled cRNA transcribed from satellite DNA hybridized clearly to six heterochromatic knobs of pachytene chromosomes. The knob heterochromatin can be distinguished by Giemsa C-banding of pachytene chromosomes. Restriction enzyme analysis and Southern blot hybridization indicated that the satellite DNA has a tandem arrangement and predominantly formed two bands of size 210 and 151 base pairs. Absence of knob satellite DNA ofC. metuliferus in the nuclear genomes ofC. melo, C. anguria andC. sativus showed thatC. metuliferus remains isolated within the genusCucumis.  相似文献   

14.
We present an in-depth study of theTy1-copia group of retrotransposons within the plant genusVicia, which contains species with widely differing genome sizes. We have compared the numbers and sequence heterogeneities of these genetic elements in three diploidVicia species chosen to represent large (V. faba, 1C=13.3 pg), medium (V. melanops, 1C=11.5 pg) and small (V. sativa, 1C=2.3 pg) genomes within the genus. The copy numbers of the retrotransposons are all high but vary greatly, withV. faba containing approximately 106 copies,V. melanops about 1000 copies andV. sativa 5000 copies. The degree of sequence heterogeneity ofTy1-copia group elements correlates with their copy number within each genome, but neither heterogeneity nor copy number are related to the genome size of the host. In situ hybridization to metaphase chromosomes shows that the retrotransposons inV. faba are distributed throughout all chromosomes but are much less abundant in certain heterochromatic regions. These results are discussed in the context of plant retrotransposon evolution.  相似文献   

15.
Repetitive sequences constitute a significant component of most eukaryotic genomes, and the isolation and characterization of repetitive DNA sequences provide an insight into the organization of the genome of interest. Here, we report the isolation and the molecular analysis and methylation status of a novel tandemly organized repetitive DNA sequence from the genome of Poncirus trifoliata. Digestion of P. trifoliata DNA with Afa I produced a prominent fragment of approximately 400 bp. Southern blotting analysis of genomic DNA digested with the same enzyme revealed a ladder composed of DNA fragments that are multimers of the 400-bp Afa I band, indicating that the repetitive DNA is arrayed in tandem. This suggests that Afa I isolated a novel satellite that we have called Poncirus trifoliata satellite DNA 400 (PN400). This satellite composes 25% of the genome and it is also present in lemon, sour orange and kumquat. Analysis of the methylation status demonstrated that the cytosines in CCGG sequences in this satellite were methylated.  相似文献   

16.
This paper is the first record of the satellite DNA of the specialized phytophagous genus Chrysolina. The satellite DNA of Chrysolina americana is organized in a tandem repeat of monomers 189 bp long, has a A + T content of 59.6 % and presents direct and inverted internal repeats. Restriction analysis of the total DNA with methylation sensitive enzymes suggests that this repetitive DNA is undermethylated. In situ hybridization with a biotinylated probe of the satellite DNA showed the pericentromeric localization of these sequences in all meiotic bivalents. The presence of this repetitive DNA in other species of the genus was also tested by Southern analysis. The results showed that this satellite DNA sequence is specific to the C. americana genome and has not been found in three other species of Chrysolina with a different choice of host plants than in the former. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The distribution of restriction sites in satellite DNA of 17 Caucasian rock lizard species of the genus Lacerta (Darevskia gen. nov., (Squamata, Lacertidae) was analyzed. The distribution patterns were shown to reflect the degree of satellite DNA evolutionary divergence, which could be revealed by taxonprint method, i.e., through the analysis of genomic DNA with a set of restriction endonucleases and subsequent computer-aided analysis. Thus, the taxonprint method offers an opportunity to examine the satellite DNA divergence in closely related species and infer the phylogeny of the species studied without reserting to costly and labor-consuming procedures. This is the advantage of using this technique at the early stages phylogenetic analysis of genomic DNA for rapid and effective estimation of relationships between closely related species as well as in the cases when DNA cloning and sequencing are too expensive or not feasible.  相似文献   

18.
Telomeres, DNA–protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of Liliaceae and Alliaceae. For example, terminal regions of chromosomes of bunching onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum.Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposons and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

19.
Summary EcoRI monomers of a highly repetitive DNA family of Beta vulgaris have been cloned. Sequence analysis revealed that the repeat length varies between 157–160 bp. The percentage of AT-residues is 62% on average. The basic repeat does not show significant homology to the BamHI sequence family of B. vulgaris that was analyzed by us earlier. Both the EcoRI and BamHI sequences are investigated and compared to each other with respect to their genomic organization in the genus Beta. Both repeats were found to be tandemly arranged in the genome of B. vulgaris in a satellite-like manner. The EcoRI satellite DNA is present in three sections (Beta, Corollinae and Nanae) of the genus, whereas the BamHI satellite DNA exists only in the section Beta. The distribution of the EcoRI and BamHI satellite families in the genus is discussed with respect to their evolution.  相似文献   

20.
Constitutive heterochromatin represents a substantial portion of the eukaryote genome, and it is mainly composed of tandemly repeated DNA sequences, such as satellite DNAs, which are also enriched by other dispersed repeated elements, including transposons. Studies on the organization, structure, composition and in situ localization of satellite DNAs have led to consistent advances in the understanding of the genome evolution of species, with a particular focus on heterochromatic domains, the diversification of heteromorphic sex chromosomes and the origin and maintenance of B chromosomes. Satellite DNAs can be chromosome specific or species specific, or they can characterize different species from a genus, family or even representatives of a given order. In some cases, the presence of these repeated elements in members of a single clade has enabled inferences of a phylogenetic nature. Genomic DNA restriction, using specific enzymes, is the most frequently used method for isolating satellite DNAs. Recent methods such as C0t1 DNA and chromosome microdissection, however, have proven to be efficient alternatives for the study of this class of DNA. Neotropical ichthyofauna is extremely rich and diverse enabling multiple approaches with regard to the differentiation and evolution of the genome. Genome components of some species and genera have been isolated, mapped and correlated with possible functions and structures of the chromosomes. The 5SHindIII‐DNA satellite DNA, which is specific to Hoplias malabaricus of the Erythrinidae family, has an exclusively centromeric location. The As51 satellite DNA, which is closely correlated with the genome diversification of some species from the genus Astyanax, has also been used to infer relationships between species. In the Prochilodontidae family, two repetitive DNA sequences were mapped on the chromosomes, and the SATH 1 satellite DNA is associated with the origin of heterochromatic B chromosomes in Prochilodus lineatus. Among species of the genus Characidium and the Parodontidae family, amplifications of satellite DNAs have demonstrated that these sequences are related to the differentiation of heteromorphic sex chromosomes. The possible elimination of satellite DNA units could explain the genome compaction that occurs among some species of Neotropical Tetraodontiformes. These topics are discussed in the present review, showing the importance of satellite DNA analysis in the differentiation and karyotype evolution of Actinopterygii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号