首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of a phenotypic model of R. Lande a nonlinear analysis is performed to investigate the evolutionary dynamics of functionally coupled quantitative traits. The underlying fitness topography has multiple peaks with a ridge and two hills adjacent to a saddle. Evolution of a complex of functionally constrained characters corresponds precisely to moving uphill along a ridge. For modelling the topology of the ridge, I follow ideas of Rechenberg and Wagner and use a so-called corridor model. The analysis reveals certain population-genetic constraints for the evolutionary emergence of a selectively favored complex of functionally constrained characters. Due to the population-genetic structure, as reflected in the pattern of variation and covariation, a population will often not be allowed to become adapted to existing physiological requirements, such as functional coupling of characters. Instead, within the present model where extinction cannot occur, it will evolve in some other direction toward an optimum that may be physiologically rather remote. In particular, there exists an optimal pattern of genetic and phenotypic variances and covariances in the following sense: on the one hand an increasing deviation from this pattern imposes increasing restrictions on the set of initial conditions enabling a population to move uphill along the ridge; on the other hand, an increasing deviation leads to a decreasing rate of adaptation along the ridge. Finally, some consequences of these constraints for possible interpretations of certain empirical results are discussed.  相似文献   

2.
Adaptation to novel environments can be based either on standing genetic variation or variation attributable to new mutations. When standing genetic variation for a functional adaptation is lacking, and variation due to new mutations is not yet available, adaptation is possible only through alternative functional solutions. Reduction in the number of bony lateral plates as an adaptation to freshwater colonization by marine threespine sticklebacks (Gasterosteus aculeatus) has occurred in numerous independent cases through allelic substitution in the ectodysplasin‐a (Eda) gene. Studying the phenotypic and genetic variation in plate number and size in five marine and six freshwater threespine stickleback populations, we found that when variation in Eda was limiting (i.e., alleles associated with the low‐plate morph were missing or in extremely low frequency), plate number reduction did not take place in freshwater populations, but reduced lateral plate coverage was achieved by a reduction in the size of lateral plates. Our results suggest that this phenotypically and genetically discrete "small‐plated" threespine stickleback—which is the dominant form in three northern European freshwater populations—may be functionally equivalent to the low‐plated morph and hence, serve as an example of convergent evolution toward functional similarity in the face of genetic constraints.  相似文献   

3.
Do genetic correlations among phenotypic characters reflect developmental organization or functional coadaptation of the characters? We test these hypotheses for the wing melanin pattern of Pieris occidentalis butterflies, by comparing estimated genetic correlations among wing melanin characters with a priori predictions of the developmental organization and the functional (thermoregulatory) organization of melanin pattern. There were significant broad-sense heritabilities and significant genetic correlations for most melanin characters. Matrix correlation tests revealed significant agreement between the observed genetic correlations and both developmental and functional predictions in most cases; this occurred even when the overlap between developmental and functional predictions was eliminated. These results suggest that both developmental organization and functional coadaptation among melanin characters influence the genetic correlation structure of melanin pattern in this species. These results have two important implications for the evolution of melanin pattern in P. occidentalis and other butterflies: 1) most phenotypic variation in pattern may reflect variation among, rather than within, sets of developmentally homologous wing melanin characters; and 2) in a changing selective environment, genetic correlations may retard the disruption of functionally coupled melanin characters, thus affecting the evolutionary response to selection.  相似文献   

4.
SUMMARY Morphological integration corresponds to interdependency between characters that can arise from several causes. Proximal causes of integration include that different phenotypic features may share common genetic sets and/or interact during their development. Ultimate causes may be the prolonged effect of selection favoring integration of functionally interacting characters, achieved by the molding of these proximal causes. Strong and direct interactions among successive teeth of a molar row are predicted by genetic and developmental evidences. Functional constraints related to occlusion, however, should have selected more strongly for a morphological integration of occluding teeth and a corresponding evolution of the underlying developmental and genetic pathways. To investigate how these predictions match the patterns of phenotypic integration, we studied the co‐variation among the six molars of the murine molar row, focusing on two populations of house mice (Mus musculus domesticus) and wood mice (Apodemus sylvaticus). The size and shape of the three upper and lower molars were quantified and compared. Our results evidenced similar patterns in both species, size being more integrated than shape among all the teeth, and both size and shape co‐varying strongly between adjacent teeth, but also between occluding teeth. Strong co‐variation within each molar row is in agreement with developmental models showing a cascade influence of the first molar on the subsequent molars. In contrast, the strong co‐variation between molars of the occluding tooth rows confirms that functional constraints molded patterns of integration and probably the underlying developmental pathways despite the low level of direct developmental interactions occurring among molar rows. These patterns of co‐variation are furthermore conserved between the house mouse and the wood mouse that diverged >10 Ma, suggesting that they may constitute long‐running constraints to the diversification of the murine rodent dentition.  相似文献   

5.
Two genetically differentiated host strains of fall armyworm were reared on their own and each other's host plants, rice and corn, to determine whether they were physiologically adapted to their natural hosts and whether they exhibited genetically based differences in development. Larval host had a greater impact on development in the rice strain than in the corn strain, indicating that physiology could have facilitated specialization in one strain but not the other. Consequently, behavioral mechanisms are also likely to be important in the maintenance of host specificity. Comparisons between strains indicated significant differences in one trait, the rate at which larvae gained weight. Because this character had consistently high heritabilities, genetic differentiation in development is indicated. An analysis of genotype-by-environment interactions within each strain detected significant interactions for three of five traits, suggesting that genotypic performance on one host was not indicative of performance on the other. Each strain thus exhibited genetic variation that would facilitate host-associated divergence and adaptation if coupled with a mechanism that reduced gene flow between hosts. Finally, significant genetic correlations between several characters were detected when strains were reared on their natural hosts but not when they were reared on nonnatural hosts. Apparently, feeding on novel hosts caused developmental uncoupling of characters. Release from genetic constraints could provide a mechanism for physiological adjustments to newly occupied habitats.  相似文献   

6.
Convergent evolution of similar phenotypic features in similar environmental contexts has long been taken as evidence of adaptation. Nonetheless, recent conceptual and empirical developments in many fields have led to a proliferation of ideas about the relationship between convergence and adaptation. Despite criticism from some systematically minded biologists, I reaffirm that convergence in taxa occupying similar selective environments often is the result of natural selection. However, convergent evolution of a trait in a particular environment can occur for reasons other than selection on that trait in that environment, and species can respond to similar selective pressures by evolving nonconvergent adaptations. For these reasons, studies of convergence should be coupled with other methods-such as direct measurements of selection or investigations of the functional correlates of trait evolution-to test hypotheses of adaptation. The independent acquisition of similar phenotypes by the same genetic or developmental pathway has been suggested as evidence of constraints on adaptation, a view widely repeated as genomic studies have documented phenotypic convergence resulting from change in the same genes, sometimes even by the same mutation. Contrary to some claims, convergence by changes in the same genes is not necessarily evidence of constraint, but rather suggests hypotheses that can test the relative roles of constraint and selection in directing phenotypic evolution.  相似文献   

7.
I examined patterns of covariation of three morphometric blossom characters [gland area (GA), gland–stigma distance (GSD), and bract length (BL)] within genets, among genets, and among populations of the tropical vine, Dalechampia scandens (Euphorbiaceae). Covariance between BL and GA was evenly distributed among the three levels. This observation, coupled with developmental information, indicates that the two characters change size similarly during development, that there is probably genetic covariance between them (apparently caused by pleiotropy), and that the genetic covariance may have constrained (at least proximally) the course of population differentiation with respect to these characters. Most covariance between GSD and GA occurred at the among-population level. This observation, coupled with developmental information, indicates that there is negligible ontogenetic covariance and that within populations there is probably little or no genetic covariance between the two characters. Among-population covariance has probably been caused by natural selection operating in a correlated fashion on characters that functionally interact in pollination.  相似文献   

8.
Phenotypic characters may covary negatively because they are in a trade-off or positively because they contribute to a single function. Genetic correlations can be used to test the validity and generality of these functional relationships by indicating the level of genetic integration and checking the conditions under which they are expressed. Phenotypic correlations indicate that there is a widespread trade-off between flight capability and early fecundity in insects. Different wing morphs (long and short wing) are thought to have a suite of reproductive and flight capability traits. In a half-sib mating experiment, we estimated phenotypic relationships between two flight-capability-related characters (flight muscle condition, wing morph) and two components of early fecundity (number of eggs in the ovaries, number of eggs laid), as well as genetic correlations relating wing morph and both components of fecundity in the wing-dimorphic cricket, Gryllus firmus. The number of eggs in the ovaries and the number of eggs laid were negatively correlated phenotypically and genetically with wing length morph (i.e., long wings associated with low fecundity). Both fecundity characters differed between wing morphs, but only if flight muscle was present and not histolyzed. The phenotypic and genetic correlations between fecundity characters were not significant. This suggests that the phenotypic relationship between ovary development and eggs laid is complex, they are not genetically integrated, and they may evolve independently. However, both early fecundity characters are functionally and genetically integrated within the trade-off to a similar degree. Finally, the trade-off affects early fecundity of both wing morphs suggesting that the functional relationship depends on flight muscle size. Received: 1 December 1998 / Accepted: 20 May 1999  相似文献   

9.
Morphological structures often consist of simpler traits which can be viewed as either integrated (e.g. correlated due to functional interdependency) or non-integrated (e.g. functionally independent) traits. The combination of a long-term stabilizing selection on the entire structure with a short-term directional selection on an adaptively important subset of traits should result in long historical persistence of integrated functional complexes, with environmentally induced variation and macroevolutionary change confined mostly to non-integrated traits. We experimentally subjected populations of three closely related species of Sorex shrews to environmental stress. As predicted, we found that most of the variation in shrew mandibular shape was localized between rather than within the functional complexes; the patterns of integration did not change between the species. The stress-induced variation was confined to nonintegrated traits and was highly concordant with the patterns of evolutionary change--species differed in the same set of non-integrated traits which were most sensitive to stress within each species. We suggest that low environmental and genetic canalization of non-integrated traits may have caused these traits to be most sensitive not only to the environmental but also to genetic perturbations associated with stress. The congruence of stress-induced and between-species patterns of variation in non-integrated traits suggests that stress-induced variation in these traits may play an important role in species divergence.  相似文献   

10.
11.
Plant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints. We examined typically obtained plant functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus content. We assumed that genetic differences in plant functional traits between species and genotypes increase with environmental heterogeneity and geographic distance, whereas trait variation due to plastic acclimation to the local environment is independent of spatial distance between sampling sites. Results suggest that most of the observed trait variation could not be explained by the measured environmental variables, thus indicating a limited potential to predict individual plant traits from commonly assessed parameters. However, we found a difference in the response of plant functional traits, such that leaf traits varied in response to canopy‐light regime and nutrient availability, whereas wood traits were related to topoedaphic factors and water availability. Our analysis furthermore revealed differences in the functional response of coexisting neotropical tree species, which suggests that endemic species with conservative ecological strategies might be especially prone to competitive exclusion under projected climate change.  相似文献   

12.
The short-term evolvability of a character is closely related to its level of additive genetic variation. However, a large component of the variation in any one character may be pleiotropically linked to other characters under the influence of different selective factors. Therefore, the organization of the organism into quasi-independent modules may be an important prerequisite for evolvability. In this paper we propose to study character evolvability in terms of conditional genetic variation. By estimating the amount of genetic variation in a character, y, that is independent of other characters, x, we can assess the evolvability of y when there is stabilizing selection on x. We suggest that systematic use of conditioning may help build a picture of modular organization and quasi-independent evolvability. As an illustration, we use this approach to assess the evolvability of floral characters in Dalechampia scandens (Euphorbiaceae). Although our study population had relatively low levels of genetic variation at the outset, we find evidence that conditioning may lead to substantial further reduction in the genetic variation available for independent adaptation. This provides additional evidence that the D. scandens blossom is constrained in its short-term evolvability.  相似文献   

13.
Population differentiation in an annual legume: local adaptation   总被引:10,自引:0,他引:10  
Abstract. Studies of many plants species have demonstrated adaptive genetic differentiation to local environmental conditions. Typically these studies are conducted to evaluate adaptation to contrasting environments. As a consequence, although local adaptation has been frequently demonstrated, we have little information as to the spatial scale of adaptive evolution. We evaluated adaptive differentiation between populations of the annual legume Chamaecrista fasciculata using a replicated common-garden design. Study sites were established in three field locations that are home to native populations of C. fasciculata . Each location was planted for two years with seed from the population native to the study site (home population) and populations located six distances (0.1-2000 km) from each site (transplanted populations). Seeds were planted into the study sites with minimum disturbance to determine the scale of local adaptation, as measured by a home-site fitness advantage, for five fitness components: germination, survival, vegetative biomass, fruit production, and the number of fruit produced per seed planted (an estimate of cumulative fitness). For all characters there was little evidence for local adaptation, except at the furthest spatial scales. Patterns of adaptive differentiation were fairly consistent in two of the three sites, but varied between years. Little genetic variation was expressed at the third site. These results, combined with previous estimates of limited gene flow, suggest that metapopulation processes and temporal environmental variation act together to reduce local adaptation, except over long distances.  相似文献   

14.
The problem of complex adaptations is studied in two largely disconnected research traditions: evolutionary biology and evolutionary computer science. This paper summarizes the results from both areas and compares their implications. In evolutionary computer science it was found that the Darwinian process of mutation, recombination and selection is not universally effective in improving complex systems like computer programs or chip designs. For adaptation to occur, these systems must possess “evolvability,” i.e., the ability of random variations to sometimes produce improvement. It was found that evolvability critically depends on the way genetic variation maps onto phenotypic variation, an issue known as the representation problem. The genotype-phenotype map determines the variability of characters, which is the propensity to vary. Variability needs to be distinguished from variations, which are the actually realized differences between individuals. The genotype-phenotype map is the common theme underlying such varied biological phenomena as genetic canalization, developmental constraints, biological versatility, developmental dissociability, and morphological integration. For evolutionary biology the representation problem has important implications: how is it that extant species acquired a genotype-phenotype map which allows improvement by mutation and selection? Is the genotype-phenotype map able to change in evolution? What are the selective forces, if any, that shape the genotype-phenotype map? We propose that the genotype-phenotype map can evolve by two main routes: epistatic mutations, or the creation of new genes. A common result for organismic design is modularity. By modularity we mean a genotype-phenotype map in which there are few pleiotropic effects among characters serving different functions, with pleiotropic effects falling mainly among characters that are part of a single functional complex. Such a design is expected to improve evolvability by limiting the interference between the adaptation of different functions. Several population genetic models are reviewed that are intended to explain the evolutionary origin of a modular design. While our current knowledge is insufficient to assess the plausibility of these models, they form the beginning of a framework for understanding the evolution of the genotype-phenotype map.  相似文献   

15.
M Kirkpatrick  D Lofsvold 《Génome》1989,31(2):778-783
  相似文献   

16.
The mechanisms translating genetic to phenotypic variation determine the distribution of heritable phenotypic variance available to selection. Pleiotropy is an aspect of this structure that limits independent variation of characters. Modularization of pleiotropy has been suggested to promote evolvability by restricting genetic covariance among unrelated characters and reducing constraints due to correlated response. However, modularity may also reduce total genetic variation of characters. We study the properties of genotype-phenotype maps that maximize average conditional evolvability, measured as the amount of unconstrained genetic variation in random directions of phenotypic space. In general, maximal evolvability occurs by maximizing genetic variance and minimizing genetic covariance. This does not necessarily require modularity, only patterns of pleiotropy that cancel on average. The detailed structure of the most evolvable genotype-phenotype maps depends on the distribution of molecular variance. When molecular variance is determined by mutation-selection equilibrium either highly pleiotropic or highly modular genotype-phenotype maps can be optimal, depending on the mutation rate and the relative strengths of stabilizing selection on the characters.  相似文献   

17.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

18.
Gene duplicates have the inherent property of initially being functionally redundant. This means that they can compensate for the effect of deleterious variation occurring at one or more sister sites. Here, I present data bearing on evolutionary theory that illustrates the manner in which any functional adaptation in duplicate genes is markedly constrained because of the compensatory utility provided by a sustained genetic redundancy. Specifically, a two-locus epistatic model of paralogous genes was simulated to investigate the degree of purifying selection imposed, and whether this would serve to impede any possible biochemical innovation. Three population sizes were considered to see if, as expected, there was a significant difference in any selection for robustness. Interestingly, physical linkage between tandem duplicates was actually found to increase the probability of any neofunctionalization and the efficacy of selection, contrary to what is expected in the case of singleton genes. The results indicate that an evolutionary trade-off often exists between any functional change under either positive or relaxed selection and the need to compensate for failures due to degenerative mutations, thereby guaranteeing the reliability of protein production.  相似文献   

19.
Human genetic variation is the incarnation of diverse evolutionary history, which reflects both selectively advantageous and selectively neutral change. In this study, we catalogue structural and functional features of proteins that restrain genetic variation leading to single amino acid substitutions. Our variation dataset is divided into three categories: i) Mendelian disease-related variants, ii) neutral polymorphisms and iii) cancer somatic mutations. We characterize structural environments of the amino acid variants by the following properties: i) side-chain solvent accessibility, ii) main-chain secondary structure, and iii) hydrogen bonds from a side chain to a main chain or other side chains. To address functional restraints, amino acid substitutions in proteins are examined to see whether they are located at functionally important sites involved in protein-protein interactions, protein-ligand interactions or catalytic activity of enzymes. We also measure the likelihood of amino acid substitutions and the degree of residue conservation where variants occur. We show that various types of variants are under different degrees of structural and functional restraints, which affect their occurrence in human proteome.  相似文献   

20.
Here we test whether the potential exists for the independent evolution of allocation to male, female, and attractive functions within a flower. We employed half-sib and parent-offspring regression methods in the tristylous plant Lythrum salicaria to determine whether there is additive genetic variation for characters important to male and female reproductive success and whether genetic correlations could constrain the independent evolution of male and female function. Although significance levels were not consistent among morph types or between populations, there were significant narrow-sense heritabilities for several traits including stamen mass, pistil mass, perianth mass, petal length, and calyx length. Traits that might be under strong stabilizing selection to promote specific pollen transfer, such as stamen and style lengths, had little heritable variation. In the majority of cases in which heritable variation was present, there were positive genetic correlations among floral traits. A strong positive genetic correlation appeared between stamen and pistil mass in the short-styled morph from one of the populations studied. This suggests that selection might not be able to act independently on biomass allocation to male and female flower parts. No evidence of negative genetic correlations appeared that would suggest trade-offs and that could augment a selection response towards sexual specialization. The observed positive correlations could be explained if we consider the “functional architecture” that underlies the covariance structure. If there is more covariance generated by pleiotropic loci controlling overall flower size than at loci controlling male versus female allocation, it could result in the observed positive covariance. At the phenotypic level, we did find significant negative partial correlations between male and female traits when flower size was controlled, but these trade-offs were among rather than within morphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号