首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated ATP hydrolysis by a mutant (DeltaNC) alpha3beta3gamma subcomplex of F0F1-ATP synthase from the thermophilic Bacillus PS3 that is defective in the noncatalytic nucleotide binding sites. This mutant subcomplex was activated by inorganic phosphate ions (Pi) and did not show continuous ATP hydrolysis activity in the absence of Pi. Pi also activated the wild-type alpha3beta3gamma subcomplex in a similar manner. Sulphate activated wild-type alpha3beta3gamma but not DeltaNC alpha3beta3gamma, indicating that Pi activation did not involve noncatalytic sites but that sulphate activation did. Pi also activated ATP hydrolysis and coupled proton translocation by the wild-type and DeltaNC F0F1-ATP synthases reconstituted into vesicle membranes.  相似文献   

2.
Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.  相似文献   

3.
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.  相似文献   

4.
F(1)-ATPase (F(1)) is an ATP-driven rotary motor wherein the γ subunit rotates against the surrounding α(3)β(3) stator ring. The 3 catalytic sites of F(1) reside on the interface of the α and β subunits of the α(3)β(3) ring. While the catalytic residues predominantly reside on the β subunit, the α subunit has 1 catalytically critical arginine, termed the arginine finger, with stereogeometric similarities with the arginine finger of G-protein-activating proteins. However, the principal role of the arginine finger of F(1) remains controversial. We studied the role of the arginine finger by analyzing the rotation of a mutant F(1) with a lysine substitution of the arginine finger. The mutant showed a 350-fold longer catalytic pause than the wild-type; this pause was further lengthened by the slowly hydrolyzed ATP analog ATPγS. On the other hand, the mutant F(1) showed highly unidirectional rotation with a coupling ratio of 3 ATPs/turn, the same as wild-type, suggesting that cooperative torque generation by the 3 β subunits was not impaired. The hybrid F(1) carrying a single copy of the α mutant revealed that the reaction step slowed by the mutation occurs at +200° from the binding angle of the mutant subunit. Thus, the principal role of the arginine finger is not to mediate cooperativity among the catalytic sites, but to enhance the rate of the ATP cleavage by stabilizing the transition state of ATP hydrolysis. Lysine substitution also caused frequent pauses because of severe ADP inhibition, and a slight decrease in ATP-binding rate.  相似文献   

5.
The yeast nuclear gene ATP4, encoding the ATP synthase subunit 4, was disrupted by insertion into the middle of it the selective marker URA3. Transformation of the Saccharomyces cerevisiae strain D273-10B/A/U produced a mutant unable to grow on glycerol medium. The ATP4 gene is unique since subunit 4 was not present in mutant mitochondria; the hypothetical truncated subunit 4 was never detected. ATPase was rendered oligomycin-insensitive and the F1 sector of this mutant appeared loosely bound to the membrane. Analysis of mitochondrially translated hydrophobic subunits of F0 revealed that subunits 8 and 9 were present, unlike subunit 6. This indicated a structural relationship between subunits 4 and 6 during biogenesis of F0. It therefore appears that subunit 4 (also called subunit b in beef heart and Escherichia coli ATP synthases) plays at least a structural role in the assembly of the whole complex. Disruption of the ATP4 gene also had a dramatic effect on the assembly of other mitochondrial complexes. Thus, the cytochrome oxidase activity of the mutant strain was about five times lower than that of the wild type. In addition, a high percentage of spontaneous rho- mutants was detected.  相似文献   

6.
Mitochondrial F1 containing genetically modified beta-subunit was purified for the first time from a mutant of the yeast Schizosaccharomyces pombe. Precipitation by poly(ethylene glycol) allowed us to obtain a very stable and pure enzyme from either mutant or wild-type strain. In the presence of EDTA, purified F1 retained high amounts of endogenous nucleotides: 4.6 mol/mol and 3.7 mol/mol for mutant and wild-type F1, respectively. The additional nucleotide in mutant F1 was ATP; it was lost in the presence of Mg2+, which led to a total of 3.4 mol of nucleotides/mol whereas wild-type F1 retained all its nucleotides. Mutant F1 bound more exogenous ADP than wild-type F1 and the same total nucleotide amount was reached with both enzymes. Kinetics of ATPase activity revealed a much higher negative cooperativity for mutant than for wild-type F1. Bicarbonate abolished this negative cooperativity, but higher concentrations were required for mutant F1. The mutant enzyme was more sensitive than the wild-type one to azide inhibition and ADP competitive inhibition; this indicated stronger interactions between nucleotide and F1 in the mutant enzyme. The latter also showed increased sensitivity to N,N'-dicyclohexylcarbodiimide irreversible inhibition.  相似文献   

7.
The defective coupling factor F1 ATPase from a mutant strain (KF11) of Escherichia coli was purified to a practically homogeneous form. The final specific activity of Mg2+-ATPase was 6-9 units/mg protein, which is about 10-15 times lower than that of F1 ATPase from the wild-type strain. The mutant F1 had a ratio of Ca2+-ATPase to Mg2+-ATPase of about 3.5, whereas the wild-type F1 had ratio of about 0.8. The mutant F1 was more unstable than wild-type F1: on storage at -80 degrees C for 2 weeks, about 80% of its activity (dependent on Ca2+ or Mg2+) was lost, whereas none of the activity of the wild-type F1 was lost. The following results indicate that the mutation is in the beta subunit. (i) High Mg2+-ATPase activity (about 20 units/mg protein) was reconstituted when the beta subunit from wild type F1 was added to dissociated mutant F1 and the mixture was dialyzed against buffer containing ATP and Mg2+. (ii) Low ATPase activity having the same ratio of Ca2+-ATPase to Mg2+-ATPase as the mutant F1 was reconstituted when a mixture of the beta subunit from the mutant F1 and the alpha and gamma subunits from wild-type F1 was dialyzed against the same buffer. (iii) Tryptic peptide analysis of the beta subunit of the mutant showed a difference in a single peptide compared with the wild-type strain.  相似文献   

8.
Recent crosslinking studies indicated the localization of the coupling ion binding site in the Na+-translocating F1F0 ATP synthase of Ilyobacter tartaricus within the hydrophobic part of the bilayer. Similarly, a membrane embedded H+-binding site is accepted for the H+-translocating F1F0 ATP synthase of Escherichia coli. For a more definite analysis, we performed parallax analysis of fluorescence quenching with ATP synthases from both I. tartaricus and E. coli. Both ATP synthases were specifically labelled at their c subunit sites with N-cyclohexyl-N'-(1-pyrenyl)carbodiimide, a fluorescent analogue of dicyclohexylcarbodiimide and the enzymes were reconstituted into proteoliposomes. Using either soluble quenchers or spinlabelled phospholipids, we observed a deeply membrane embedded binding site, which was quantitatively determined for I. tartaricus and E. coli to be 1.3 +/- 2.4 A and 1.8 +/- 2.8 A from the bilayer center apart, respectively. These data show a conserved topology among enzymes of different species. We further demonstrated the direct accessibility for Na+ ions to the binding sites in the reconstituted I. tartaricus c11 oligomer in the absence of any other subunits, pointing to intrinsic rotor channels. The common membrane embedded location of the binding site of ATP synthases suggest a common mechanism for ion transfer across the membrane.  相似文献   

9.
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.  相似文献   

10.
Yeast mitochondrial ATP synthase has three regulatory proteins; ATPase inhibitor, 9K protein, and 15K protein. A mutant yeast lacking these three regulatory factors was constructed by gene disruption. Rates of ATP synthesis of both wild-type and the mutant yeast mitochondria decreased with decrease of respiration, while their membrane potential was maintained at 170-160 mV under various respiration rates. When mitochondrial respiration was blocked by antimycin A, the membrane potential of both types of mitochondria was maintained at about 160 mV by ATP hydrolysis. ATP hydrolyzing activity of F(1)FoATPase solubilized from normal mitochondria decreased in proportion to the rate of ATP synthesis, while the activity of the mutant F(1)FoATPase was constant regardless of changes in the rate of phosphorylation. These observations strongly suggest that F(1)FoATPase in the phosphorylating mitochondria is a mixture of two types of enzyme, phosphorylating and non-phosphorylating enzymes, whose ratio is determined by the rate of respiration and that the ATPase inhibitor binds preferentially to the non-phosphorylating enzyme.  相似文献   

11.
Kaim G  Prummer M  Sick B  Zumofen G  Renn A  Wild UP  Dimroth P 《FEBS letters》2002,525(1-3):156-163
F0F1 ATP synthases are the smallest rotary motors in nature and work as ATP factories in bacteria, plants and animals. Here we report on the first observation of intersubunit rotation in fully coupled single F0F1 molecules during ATP synthesis or hydrolysis. We investigate the Na+-translocating ATP synthase of Propionigenium modestum specifically labeled by a single fluorophore at one c subunit using polarization-resolved confocal microscopy. Rotation during ATP synthesis was observed with the immobilized enzyme reconstituted into proteoliposomes after applying a diffusion potential, but not with a Na+ concentration gradient alone. During ATP hydrolysis, stepwise rotation of the labeled c subunit was found in the presence of 2 mM NaCl, but not without the addition of Na+ ions. Moreover, upon the incubation with the F0-specific inhibitor dicyclohexylcarbodiimide the rotation was severely inhibited.  相似文献   

12.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

13.
We cloned and sequenced an operon of nine genes coding for the subunits of the Bacillus subtilis F0F1 ATP synthase. The arrangement of these genes in the operon is identical to that of the atp operon from Escherichia coli and from three other Bacillus species. The deduced amino acid sequences of the nine subunits are very similar to their counterparts from other organisms. We constructed two B. subtilis strains from which different parts of the atp operon were deleted. These B. subtilis atp mutants were unable to grow with succinate as the sole carbon and energy source. ATP was synthesized in these strains only by substrate-level phosphorylation. The two mutants had a decreased growth yield (43 and 56% of the wild-type level) and a decreased growth rate (61 and 66% of the wild-type level), correlating with a twofold decrease of the intracellular ATP/ADP ratio. In the absence of oxidative phosphorylation, B. subtilis increased ATP synthesis through substrate-level phosphorylation, as shown by the twofold increase of by-product formation (mainly acetate). The increased turnover of glycolysis in the mutant strain presumably led to increased synthesis of NADH, which would account for the observed stimulation of the respiration rate associated with an increase in the expression of genes coding for respiratory enzymes. It therefore appears that B. subtilis and E. coli respond in similar ways to the absence of oxidative phosphorylation.  相似文献   

14.
The membrane-embedded F(0) part of ATP synthases is responsible for ion translocation during ATP synthesis and hydrolysis. Here, we describe an in vitro system for measuring proton fluxes through F(0) complexes by fluorescence changes of the entrapped fluorophore pyranine. Starting from purified enzyme, the F(0) part was incorporated unidirectionally into phospholipid vesicles. This allowed analysis of proton transport in either synthesis or hydrolysis direction with Deltapsi or DeltapH as driving forces. The system displayed a high signal-to-noise ratio and can be accurately quantified. In contrast to ATP synthesis in the Escherichia coli F(1)F(0) holoenzyme, no significant difference was observed in the efficiency of DeltapH or Deltapsi as driving forces for H(+)-transport through F(0). Transport rates showed linear dependency on the driving force. Proton transport in hydrolysis direction was about 2400 H(+)/(s x F(0)) at Deltapsi of 120 mV, which is approximately twice as fast as in synthesis direction. The chloroplast enzyme was faster and catalyzed H(+)-transport at initial rates of 6300 H(+)/(s x F(0)) under similar conditions. The new method is an ideal tool for detailed kinetic investigations of the ion transport mechanism of ATP synthases from various organisms.  相似文献   

15.
16.
The aberrant kinase activity of RET (rearranged during transfection), a transmembrane tyrosine kinase, is associated with human cancer. A point mutation caused by the replacement of solvent-front hydrophilic S904, located on the activation loop (A-loop), with a bulky hydrophobic phenylalanine residue can induce resistance to the type I kinase inhibitor vandetanib. A possible mechanism of this drug resistance is the release of a cis-autoinhibited conformation of RET for autophosphorylation, which activates RET kinase. Because the association between S904F mutation and enhanced autophosphorylation is unclear, we conducted molecular modeling analysis to compare unphosphorylated apo wild-type and S904F mutant structures. The structural compactness of the A-loop promoted ATP binding. When the A-loop is extended, the αC helix moves toward the glycine-rich loop, resulting in the protrusion of F735. The extruded F735 connects with E734 and R912 and constrains the ATP pocket entrance. Contrarily, a contracted A-loop pulls the αC helix away from the glycine-rich loop, burying F734 and making the ATP pocket accessible. The mutated F904 stabilizes the contracted A-loop and releases the autoinhibited conformation of RET, thereby facilitating autophosphorylation. We also simulated two ATP-bound systems. The binding free energies of ATP, estimated through the molecular mechanics with a generalized Born and surface area solvation approach, revealed that the S904F mutant was bound more tightly than was the wild type with the ATP. The findings support the premise of autophosphorylation promotion in the S904F mutant.  相似文献   

17.
The role of the C-terminal part of yeast ATP synthase subunit 4 (subunit b) in the assembly of the whole enzyme was studied by using nonsense mutants generated by site-directed mutagenesis. The removal of at least the last 10 amino-acid residues promoted mutants which were unable to grow with glycerol or lactate as carbon source. These mutants were devoid of subunit 4 and of another F0 subunit, the mitochondrially encoded subunit 6. The removal of the last eight amino-acid residues promoted a temperature-sensitive mutant (PVY161). At 37 degrees C this strain showed the same phenotype as above. When grown at permissive temperature (30 degrees C) with lactate as carbon source, PVY161 and the wild-type strain both displayed the same generation time and growth yield. Furthermore, the two strains showed identical cellular respiration rates at 30 degrees C and 37 degrees C. However, in vitro the ATP hydrolysis of PVY161 mitochondria exhibited a low sensitivity to F0 inhibitors, while ATP synthesis displayed the same oligomycin sensitivity as wild-type mitochondria. It is concluded that, in this mutant, the assembly of the truncated subunit 4 in PVY161 ATP synthase is thermosensitive and that, once a functional F0 is formed, it is stable. On the other hand, the removal of the last eight amino-acid residues promoted in vitro a proton leak between the site of action of oligomycin and F1.  相似文献   

18.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

19.
The arrangement of the b-subunits in the holo-enzyme F(0)F(1)-ATP synthase from E. coli is investigated by site-directed mutagenesis spin-label EPR. F(0)F(1)-ATP synthases couple proton translocation with the synthesis of ATP from ADP and phosphate. The hydrophilic F(1)-part and the hydrophobic membrane-integrated F(0)-part are connected by a central and a peripheral stalk. The peripheral stalk consists of two b-subunits. Cysteine mutations are introduced in the tether domain of the b-subunit at b-40, b-51, b-53, b-62 or b-64 and labeled with a nitroxide spin label. Conventional (9 GHz), high-field (95 GHz) and pulsed EPR spectroscopy reveal: All residues are in a relatively polar environment, with mobilities consistent with helix sites. The distance between the spin labels at each b-subunit is 2.9 nm in each mutant, revealing a parallel arrangement of the two helices. They can be in-register but separated by a large distance (1.9 nm), or at close contact and displaced along the helix axes by maximally 2.7 nm, which excludes an in-register coiled-coil model suggested previously for the b-subunit. Binding of the non-hydrolysable nucleotide AMPPNP to the spin-labeled enzyme had no significant influence on the distances compared to that in the absence of nucleotides.  相似文献   

20.
F(1)-ATPase is an ATP hydrolysis-driven motor in which the gamma subunit rotates in the stator cylinder alpha(3)beta(3). To know the coordination of three catalytic beta subunits during catalysis, hybrid F(1)-ATPases, each containing one, two, or three "slow" mutant beta subunits that bind ATP very slowly, were prepared, and the rotations were observed with a single molecule level. Each hybrid made one, two, or three steps per 360 degrees revolution, respectively, at 5 microm ATP where the wild-type enzyme rotated continuously without step under the same observing conditions. The observed dwell times of the steps are explained by the slow binding rate of ATP. Except for the steps, properties of rotation, such as the torque forces exerted during rotary movement, were not significantly changed from those of the wild-type enzyme. Thus, it appears that the presence of the slow beta subunit(s) does not seriously affect other normal beta subunit(s) in the same F(1)-ATPase molecule and that the order of sequential catalytic events is faithfully maintained even when ATP binding to one or two of the catalytic sites is retarded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号