首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Rhabdomyolysis or crush syndrome is a pathology caused by muscle injury resulting in acute renal failure. The latest data give strong evidence that this syndrome caused by accumulation of muscle breakdown products in the blood stream is associated with oxidative stress with primary role of mitochondria. In order to evaluate the significance of oxidative stress under rhabdomyolysis we explored the direct effect of myoglobin on renal tubules and isolated kidney mitochondria while measuring mitochondrial respiratory control, production of reactive oxygen and nitrogen species and lipid peroxidation. In parallel, we evaluated mitochondrial damage under myoglobinurea in vivo. An increase of lipid peroxidation products in kidney mitochondria and release of cytochrome c was detected on the first day of myoglobinuria. In mitochondria incubated with myoglobin we detected respiratory control drop, uncoupling of oxidative phosphorylation, an increase of lipid peroxidation products and stimulated NO synthesis. Mitochondrial pore inhibitor, cyclosporine A, mitochondria-targeted antioxidant (SkQ1) and deferoxamine (Fe-chelator and ferryl-myoglobin reducer) abrogated these events. Similar effects (oxidative stress and mitochondrial dysfunction) were revealed when myoglobin was added to isolated renal tubules. Thus, rhabdomyolysis can be considered as oxidative stress-mediated pathology with mitochondria to be the primary target and possibly the source of reactive oxygen and nitrogen species. We speculate that rhabdomyolysis-induced kidney damage involves direct interaction of myoglobin with mitochondria possibly resulting in iron ions release from myoglobin's heme, which promotes the peroxidation of mitochondrial membranes. Usage of mitochondrial permeability transition blockers, Fe-chelators or mitochondria-targeted antioxidants, may bring salvage from this pathology.  相似文献   

4.
5.
6.
A study on the effect of anandamide (AEA) in energy coupling of rat liver mitochondria is presented. Micromolar concentrations of AEA, while almost ineffective on substrate supported oxygen consumption rate and on uncoupler stimulated respiration, strongly inhibited the respiratory state III. AEA did not change the rate and the extent of substrate generated membrane potential, but markedly delayed rebuilding by respiration of the potential collapsed by ADP addition. Overall, these data suggest that anandamide inhibits the oxidative phosphorylation process. Direct measurement of the FoF1 ATP synthase activity showed that the oligomycin sensitive ATP synthesis was inhibited by AEA, (IC50, 2.5 μM), while the ATP hydrolase activity was unaffected. Consistently, AEA did not change the membrane potential generated by ATP hydrolysis.  相似文献   

7.
A152T‐variant human tau (hTau‐A152T) increases risk for tauopathies, including Alzheimer's disease. Comparing mice with regulatable expression of hTau‐A152T or wild‐type hTau (hTau‐WT), we find age‐dependent neuronal loss, cognitive impairments, and spontaneous nonconvulsive epileptiform activity primarily in hTau‐A152T mice. However, overexpression of either hTau species enhances neuronal responses to electrical stimulation of synaptic inputs and to an epileptogenic chemical. hTau‐A152T mice have higher hTau protein/mRNA ratios in brain, suggesting that A152T increases production or decreases clearance of hTau protein. Despite their functional abnormalities, aging hTau‐A152T mice show no evidence for accumulation of insoluble tau aggregates, suggesting that their dysfunctions are caused by soluble tau. In human amyloid precursor protein (hAPP) transgenic mice, co‐expression of hTau‐A152T enhances risk of early death and epileptic activity, suggesting copathogenic interactions between hTau‐A152T and amyloid‐β peptides or other hAPP metabolites. Thus, the A152T substitution may augment risk for neurodegenerative diseases by increasing hTau protein levels, promoting network hyperexcitability, and synergizing with the adverse effects of other pathogenic factors.  相似文献   

8.
To determine the in vivo functional significance of troponin I (TnI) protein kinase C (PKC) phosphorylation sites, we created a transgenic mouse expressing mutant TnI, in which PKC phosphorylation sites at serines-43 and -45 were replaced by alanine. When we used high-perfusate calcium as a PKC activator, developed pressures in transgenic (TG) perfused hearts were similar to wild-type (WT) hearts (P = not significant, NS), though there was a 35% and 32% decrease in peak-systolic intracellular calcium (P < 0.01) and diastolic calcium (P < 0.005), respectively. The calcium transient duration was prolonged in the TG mice also (12-27%, ANOVA, P < 0.01). During global ischemia, TG hearts developed ischemic contracture to a greater extent than WT hearts (41 +/- 18 vs. 69 +/- 10 mmHg, perfusate calcium 3.5 mM, P < 0.01). In conclusion, expression of mutant TnI lacking PKC phosphorylation sites results in a marked alteration in the calcium-pressure relationship, and thus susceptibility to ischemic contracture. The reduced intracellular calcium and prolonged calcium transients suggests that a potent feedback mechanism exists between the myofilament and the processes controlling calcium homeostasis.  相似文献   

9.
Effect of morphine, codeine, dionine and nalorphine on the oxidative phosphorylation in rat liver mitochondria was studied. Morphine is found to inhibit both ATP-synthetase and ATP-ase activities in mitochondria, but not in submitochondrial particles. Morphine-suppressed oxidative phosphorylation was competitively reversed with high concentrations of ADP, but not of inorganic phosphate. The effect of other opiates (i.e. codeine, dionine, nalorphine) was similar. It is suggested, that opiates inhibit the transport of adenine nucleotides through inner mitochondrial membrane, as it does atractyloside. A significance of the hydrophobic interaction between the inhibitor and adenine nucleotide translocase is outlined, since the degree of the inhibition of oxidative phosphorylation is increased with the increase in the number of non-ionized opiate molecules (at alkaline pH values) and in the length of the carbon chain of narcotic molecule as follows: morphine--codeine--dionine--nalorphine.  相似文献   

10.
11.
12.
We studied the effects and mode of action of epinephrine on the oxidative phosphorylation of rat liver mitochondria. With either succinate or beta-hydroxybutyrate as substrate, i.v. injection of 1.5 microgram/100 g epinephrine increased the respiratory rates by 30-40% in state 3 (with ADP), and by 20-30% in state 4 (after ADP phosphorylation), so that the respiratory control ratio (state 3/state 4) changed little. The respiratory stimulation by epinephrine was maximal 20 minutes after its injection. The action of epinephrine on mitochondria was blocked by pretreatment of the animals with the alpha 1-antagonist prazosin but not by treatment with the beta-antagonist propranolol. I. v. injection of 10 micrograms/100 g phenylephrine evoked the same mitochondrial response as epinephrine. I. v. administration of 50 micrograms/100 g dibutyryl cyclic AMP enhanced glycaemia but did not affect mitochondrial respiration. Epinephrine therefore has an alpha 1-type of action on mitochondrial oxidative phosphorylation.  相似文献   

13.
14.
15.
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in adulthood. We have developed an IUGR model in the rat whereby the animals develop diabetes between 3 and 6 mo of age that is associated with insulin resistance. Alterations in hepatic glucose metabolism are known to contribute to the hyperglycemia of diabetes; however, the mechanisms underlying this phenomenon have not been fully explained. To address this issue, intact liver mitochondria were isolated from IUGR and control offspring at different ages to examine the nature and time course of possible defects in oxidative metabolism. Phosphoenolpyruvate carboxykinase (PEPCK) expression was also measured in livers of IUGR and control offspring. Rates of ADP-stimulated (state 3) oxygen consumption were increased for succinate in the fetus and for alpha-ketoglutarate and glutamate at day 1, reflecting possible compensatory metabolic adaptations to acute hypoxia and acidosis in IUGR rats. By day 14, oxidation of glutamate and alpha-ketoglutarate had returned to normal, and by day 28, oxidation rates of pyruvate, glutamate, succinate, and alpha-ketoglutarate were significantly lower than those of controls. Rotenone-sensitive NADH-O2 oxidoreductase activity was similar in control and IUGR mitochondria at all ages, showing that the defect responsible for decreased pyruvate, glutamate, and alpha-ketoglutarate oxidation in IUGR liver precedes the electron transport chain and involves pyruvate and alpha-ketoglutarate dehydrogenases. Increased levels of manganese superoxide dismutase suggest that an antioxidant response has been mounted, and hydroxynonenal (HNE) modification of pyruvate dehydrogenase E2-(catalytic) and E3-binding protein subunits suggests that HNE-induced inactivation of this key enzyme may play a role in the mechanism of injury. The level of PEPCK mRNA was increased 250% in day 28 IUGR liver, indicating altered gene expression of the gluconeogenic enzyme that precedes overt hyperglycemia. These results indicate that uteroplacental insufficiency impairs mitochondrial oxidative phosphorylation in the liver and that this derangement predisposes the IUGR rat to increased hepatic glucose production by suppressing pyruvate oxidation and increasing gluconeogenesis.  相似文献   

16.
17.
Approximately 2% of amyotrophic lateral sclerosis (ALS) cases are caused by mutations in the super oxide dismutase 1 (SOD1) gene and transgenic mice for these mutations recapitulate many features of this devastating neurodegenerative disease. Here we show that the amount of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), two endocannabinoids that have neuroprotective properties, increase in spinal cord of SOD1(G93A) transgenic mice. This increase occurs in the lumbar section of spinal cords, the first section to undergo neurodegeneration, and is significant before overt motor impairment. Our results show that chronic neurodegeneration induced by a genetic mutation increases endocannabinoid production possibly as part of an endogenous defense mechanism.  相似文献   

18.
Transgenic mice carrying the human mutated SOD1 gene with a glycine/alanine substitution at codon 93 (G93A) are a widely used model for the fatal human disease amyotrophic lateral sclerosis (ALS). In these transgenic mice, we carried out a neurochemical study not only restricted to the primarily affected regions, the cervical and lumbar segments of the spinal cord, but also to several other brain regions. At symptomatic (110 and 125 days of age), but not at pre-symptomatic (55 days of age) stages, we found significant decreases in catalytic activity of the cholinergic enzyme, choline acetyltransferase (ChAT) in the hippocampus, olfactory cortex and fronto-parietal cortex. In parallel, we observed a decreased number of basal forebrain cholinergic neurons projecting to these areas. No alterations of the cholinergic markers were noticed in the striatum and the cerebellum. A widespread marker for GABAergic neurons, glutamate decarboxylase (GAD), was unaffected in all the areas examined. Alteration of cholinergic markers in forebrain areas was paralleled by concomitant alterations in the spinal cord and brainstem, as a consequence of progressive apoptotic elimination of cholinergic motor neuron. Gestational supplementation of choline, while able to result in long-term enhancement of cholinergic activity, did not improve transgenic mice lifespan nor counteracted cholinergic impairment in brain regions and spinal cord.  相似文献   

19.
Human CG is a pregnancy marker secreted by the placenta, and it utilizes the same receptors as does LH. Human CG is a heterodimer, and its subunits are expressed in tissues other than placenta. Similarly, LH/hCG receptors are also expressed in multiple tissues; however, the physiological significance of this expression is unknown. Free hCGbeta is efficiently secreted in vitro in transfected cells and is highly expressed in many human cancers; however, the biological effects of free hCGbeta in vivo are unknown. To study in vivo consequences of elevated levels of free hCGbeta and hCG dimer in both male and female reproductive physiology, we used mouse metallothionein 1 promoter to generate multiple lines of transgenic mice that overexpressed either one or both subunits of hCG. Although mice expressing the glycoprotein hormone alpha subunit are normal and fertile, both male and female transgenic mice overexpressing only the hormone-specific hCGbeta subunit are infertile. The hCGbeta subunit-expressing transgenic female mice progressively develop cystic ovaries, whereas the male transgenic mice are infertile but otherwise are not phenotypically discernible. In contrast, both the male and female transgenic mice coexpressing high levels of the hCG subunits (i.e., the hCG dimer) demonstrate multiple reproductive defects. The male transgenic mice have Leydig cell hyperplasia, very high levels of serum testosterone, reduced testis size, and dramatically enlarged seminal vesicles and are infertile and display overly aggressive behavior when caged with females. The female transgenic mice are also infertile, have elevated levels of serum estradiol, and progressively develop hemorrhagic and cystic ovaries with thecal layer enlargement and stromal cell proliferation and degenerating kidneys. These results suggest that the in vivo biological effects of ectopically expressed free hCGbeta subunit are distinct from those of the hCG dimer and are gender specific. These transgenic mice are useful models for studying the biology of free hCGbeta subunit, for further analyzing the gain of function effects of hCG during early Leydig cell development, and for studying the roles of hCG in ovarian and kidney pathophysiology and function.  相似文献   

20.
Nonalcoholic fatty liver disease (NAFLD) is the most frequent histological finding in individuals with abnormal liver-function tests in the Western countries. In previous studies, we have shown that oxidative phosphorylation (OXPHOS) is decreased in individuals with NAFLD, but the cause of this mitochondrial dysfunction remains uncertain. The aims of this study were to determine whether feeding mice a high-fat diet (HFD) induces any change in the activity of OXPHOS, and to investigate the mechanisms involved in the pathogenesis of this defect. To that end, 30 mice were distributed between five groups: control mice fed a standard diet, and mice on a HFD and treated with saline solution, melatonin (an antioxidant), MnTBAP (a superoxide dismutase analog) or uric acid (a scavenger of peroxynitrite) for 28 weeks intraperitoneously. In the liver of these mice, we studied histology, activity and assembly of OXPHOS complexes, levels of subunits of these complexes, gene expression of these subunits, oxidative and nitrosative stress, and oxidative DNA damage. In HFD-fed mice, we found nonalcoholic steatohepatitis, increased gene expression of TNFα, IFNγ, MCP-1, caspase-3, TGFβ1 and collagen α1(I), and increased levels of 3-tyrosine nitrated proteins. The activity and assembly of all OXPHOS complexes was decreased to about 50–60%. The amount of all studied OXPHOS subunits was markedly decreased, particularly the mitochondrial-DNA-encoded subunits. Gene expression of mitochondrial-DNA-encoded subunits was decreased to about 60% of control. There was oxidative damage to mitochondrial DNA but not to genomic DNA. Treatment of HFD-fed mice with melatonin, MnTBAP or uric acid prevented all changes observed in untreated HFD-fed mice. We conclude that a HFD decreased OXPHOS enzymatic activity owing to a decreased amount of fully assembled complexes caused by a reduced synthesis of their subunits. Antioxidants and antiperoxynitrites prevented all of these changes, suggesting that nitro-oxidative stress played a key role in the pathogenesis of these alterations. Treatment with these agents might prevent the development of NAFLD in humans.KEY WORDS: Mitochondrial respiratory chain, Nonalcoholic steatohepatitis, NADPH oxidase, Oxidative phosphorylation, Proteomic, Nitro-oxidative stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号