首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The stimulation of DNA synthesis by serum is accompanied by early (30 minutes) and late (2-8 hours) increase in ouabain-sensitive rubidium (potassium) influx and the elevation of intracellular potassium content from 0.5-0.6 to 0.7-0.8 mmole per gram protein in CHO-K1 cells. Isoproterenol alone induces the transient increase both in potassium influx via Na,K-ATPase and in potassium efflux without any effect on intracellular potassium content and cell proliferation. Isoproterenol acts synergistically with serum in eliciting the early and late changes in potassium transport and in stimulating G1----S transition. The combination of serum and theophylline produces a rapid increase in potassium influx, however, it does not stimulate DNA synthesis and does not induce any later increase in intracellular potassium content. It is concluded that early and late activation of Na,K-ATPase by mitogens can be dissociated; the Na,K-ATPase activation is involved in mitogenic response when producing the sustained potassium influx and the elevation of intracellular potassium content during G1----S transition.  相似文献   

2.
I I Marakhova 《Tsitologiia》1991,33(11):67-77
Recent studies of potassium fluxes and intracellular potassium content is mitogen-activated cells have shown that the stimulation of G0----G1----S transition in arrested cell cultures in associated with both immediate (early) and prolonged (delayed) increase in potassium influx due to elevation of ouabain-inhibitable transport by Na,K-ATPase. The early and the delayed changes in ion transporters of plasma membrane can be disrupted, mechanisms of these changes being presumably different. The dissociation between the early and delayed ionic events were demonstrated in cell cultures activated to proliferate by growth factors, hormones, cAMP-elevating agents, as well as in the presence of cycloheximide. The early ionic events are related to the primary transduction of membrane signal, whereas the delayed modulation of ion transport via Na,K-ATPase has another function and is associated with cell growth. The increase in cell potassium content per gram of protein is typical of the successful G1----S transition in mitogen-activated cell cultures.  相似文献   

3.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

4.
Ouabain-inhibitable rubidium influxes, intracellular sodium content (Nai), and alpha 1-subunit abundance have been studied in human blood lymphocytes, stimulated by phytohemagglutinin (PHA) or by the phorbol 12,13-dibutyrate (PDBu), and calcium ionophore--ionomycin. It is shown that at early stages of PHA-induced activation, the Na/K pump expression (as determined by Wesrn blots of alpha 1 protein in membrane fractions of total cell lysates) does not change, and the increase in Rb influx is due to the increase in Nai and results from the enhanced transport activity of Na/K pumps present in plasma membrane. During the late stages of G0-->G1-->S transit (16-48 h), the increase in Rb influx occurs without changes in Nai, and monensin increases both Nai, and the Rb influx via the Na/K pump. To the end of the first day of mitogen activation, the alpha 1 protein content was found to increase by 5-7 times. A correlation was revealed between changes in ouabain-inhibitable Rb influxes, alpha 1 protein abundance, and the proliferation rate. It is concluded that blasttransformathion of normal human lymphocytes is accompanied by the increase in membrane-associated pool of alpha 1-subunit of Na+,K(+)-ATPase, and the enhanced activity of sodium pump during the G0-->G1-->S progression is provided by increased number of Na+,K(+)-ATPase pumps in plasma membrane.  相似文献   

5.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

6.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

7.
Intracellular sodium, calcium, and magnesium content as well as lithium influx have been examined in serum-stimulated CHO cultures using flame-emission technique. Intracellular sodium and lithium influx does not change during the G1----S transition, they increase by 1.3-2 times in the late S and in mitosis. In stationary cultures of CHO cells cellular magnesium is about 50-60 mumole/gr protein; its content increases in 2-3 hours after serum addition and remains constant during the G1----S transition. In stationary cultures of CHO cells cellular calcium is about 20 mumole/gr protein and it increases by 1.5-2 times in the late G1 and S phases. It is concluded that alterations of ion transport accompany not only the early cell response to mitogen but also the G1----S transition.  相似文献   

8.
Intracellular Na+, K+, and Mg2+ concentrations have been measured during the HeLa cell cycle and compared with changes in oxygen utilization and macromolecular synthesis. Cell water content remains relatively constant at 79 +/- 1% during the cell cycle. A biphasic change in intracellular Na+ occurs with low values as cells reach peak S phase and again in early G1. The decrease in S coincides with an increase in cell volume during increased macromolecular synthesis. The fall in intracellular Na+ during mitosis/early G1 coincides with decreased energy utilization as macromolecular synthesis decreases with a continued decrease in [Na+]i in G1 corresponding to a period of increasing cell volume and an increase in protein synthesis. Intracellular Na+ is relatively high during late S/G2 when phosphate incorporation into protein and phospholipid is maximal. Intracellular K+ concentrations largely parallel intracellular Na+ levels although the intracellular K+:Na+ ratio is significantly lower as the cell volume increases during late G2/mitosis. Additions of a Na+-pump inhibitor (strophanthidin) not only caused a rise in [Na+]i and fall in [K+]i but also inhibited protein synthesis. Conversely, addition of a protein synthesis inhibitor (cycloheximide) blocked amino acid incorporation and produces a fall in intracellular Na+ levels. These findings indicate that intracellular Na+ and K+ play an important role in regulating cell hydration during the cell cycle and that changes in Na+, K+-ATPase activity, synthesis and/or utilization of high energy phosphate compounds, fluid phase turnover (endocytosis), Na+:H+ exchange (pHi), Donnan forces, and ionic adsorption may all be involved.  相似文献   

9.
The participation of Mg2+ and Ca2+ in complicated mechanisms of Na+, K(+)-ATPase regulation is discussed in the survey. The regulatory actions of Mg2+ on Na+, K(+)-ATPase such as its participation in phosphorylation and dephosphorylation of the enzyme, ADP/ATP-exchange inhibition, cardiac glycosides and vanadate binding with the enzyme, conformational changes induction during ATPase cycle are reviewed in detail. Some current views of mechanisms of above mentioned Mg2+ regulatory effects are discussed. The experimental evidence of Ca2+ immediate influence on the functional activity of Na+, K(+)-ATPase (catalytic, transport and glycoside-binding) are given. It's noted that these effects are based on the conformational changes in the enzyme and also on the phase transition in membrane induced by Ca2+. Unimmediate action of Ca2+ on Na+, K(+)-ATPase is also discussed, especially due to its effect on other membrane systems functionally linked with Na(+)-pump (for instance, due to Na+/Ca(+)-exchanger activation). It's concluded that Mg2+ and Ca2+ as "universal regulators" of the cell effectively influence the functional activity and conformational states of Na+, K(+)-ATPase.  相似文献   

10.
Expression of Na+,K(+)-ATPase alfal-subunit and of oubain-sensitive rubidium influxes has been investigated in human peripheral blood lymphocytes. Isolated lymphocytes were stimulated by phytogemagglutinin (PHA) or interleukin-2 (IL-2). It has been shown that during the early stage of the PHA-activation the alfal-subunit abundance in the membrane fractions of the human blood lymphocytes does not change, whereas at the late stages of Go-->G1-->S transition (16-48 h) the alfa1 protein content increases. A translation inhibitor cycloheximide was found to prevent the late increase in alfa1-subunit expression. An immunosuppressant cyclosporin A decreases both IL-2-dependent T-lymphocyte progression and alfa1-subunit abundance by 48 h of PHA-induced lymphocyte activation. In the lymphocytes pretreated by PHA in submitogenic concentration (0.8-1.0 microg/ml) exogenous IL-2 (100 U/ml) induces a proliferative response as well as alfal-protein accumulation. A decrease in alfa1-protein accumulation in the presence of specific inhibitors of separate signal transduction pathways enables us to conclude that protein kinases ERK1/2 (MAPK pathway) and JAK3 (JAK-STAT pathway) mediate the IL-2-dependent regulation of Na+,K(+)-ATPase expression during lymphocyte transition from resting stage to proliferation. A correlation between changes in ouabain-sensitive rubidium influxes and the alfal-subunit amount has been demonstrated. It is concluded that IL-2-dependent-progression of normal human lymphocytes from quiescence to proliferation is accompanied by the increase in Na+,K(+)-ATPase alfa1-subunits expression, and the enhanced transport activity of a sodium pump during the prereplicative stage is provided by the increased number of functional pump units in plasma membrane.  相似文献   

11.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

12.
The pumping activity of the plasma membrane-bound Na+,K+-ATPase shows considerable variation during the cell cycle of mouse neuroblastoma Neuro-2A cells. Addition of external ATP at millimolar concentrations, which selectively enhances the plasma membrane permeability of Neuro-2A cells for sodium ions, stimulates the Na+,K+-ATPase pumping activity at all phases of the cell cycle from a factor of 1.05 in mitosis up to 2.2 in G1 phase. Determination of the number of Na+,K+-ATPase copies per cell by direct 3H-ouabain binding studies in the presence of external ATP shows a gradual increase in the number of pump sites on passing from mitosis to the late S/G2-phase by approximately a factor of 2. From these data the pumping activity per copy of Na+,K+-ATPase, optimally stimulated with respect to its various substrate ions, has been determined during the various phases of the cell cycle. This optimally stimulated pumping activity per enzyme copy, which is a reflection of the physicochemical state of the plasma membrane, is high in mitosis, almost twofold lower in early G1 phase, and increases gradually again during the other phases of the cell cycle. This shows that the observed regulation of Na+,K+-ATPase activity during the cell cycle is caused by a combination of three independent factors--namely variation in intracellular substrate availability (Na+), changes in number of enzyme copies per cell, and modulation of the plasma membrane environment of the protein molecules. The modulation of the optimal pumping activity per enzyme copy shows a good correlation (rho = 0.96) with the known modulation of protein lateral mobility during the cell cycle, such that a high protein lateral mobility correlates with a low enzyme activity. It is concluded that changes in plasma membrane properties take place during the Neuro-2A cell cycle that result in changes in the rate of protein lateral diffusion and Na+,K+-ATPase activity in directly correlated way.  相似文献   

13.
Changes in active K+ and Na+ influx during the cell cycle of neuroblastoma (clone Neuro-2A) have suggested activation of an Na+, H+ exchange system during the G1/S-phase transition. Here we report that pHi, measured by the digitonin null-point method, is constant during G1-phase and the G1/S-phase transition and decreases in early S-phase. In addition pHi is shown to be most sensitive to the diuretic amiloride in the G1/S-phase transition, in agreement with the ion influx data. It is concluded from these data, that pHi is tightly regulated during the early cell cycle phases by the Na+, H+ exchange system, in particular during the G1/S-phase transition.  相似文献   

14.
The balance and cross-talk between natruretic and antinatruretic hormone receptors plays a critical role in the regulation of renal Na+ homeostasis, which is a major determinant of blood pressure. Dopamine and angiotensin II have antagonistic effects on renal Na+ and water excretion, which involves regulation of the Na+,K+-ATPase activity. Herein we demonstrate that angiotensin II (Ang II) stimulation of AT1 receptors in proximal tubule cells induces the recruitment of Na+,K+-ATPase molecules to the plasmalemma, in a process mediated by protein kinase Cbeta and interaction of the Na+,K+-ATPase with adaptor protein 1. Ang II stimulation led to phosphorylation of the alpha subunit Ser-11 and Ser-18 residues, and substitution of these amino acids with alanine residues completely abolished the Ang II-induced stimulation of Na+,K+-ATPase-mediated Rb+ transport. Thus, for Ang II-dependent stimulation of Na+,K+-ATPase activity, phosphorylation of these serine residues is essential and may constitute a triggering signal for recruitment of Na+,K+-ATPase molecules to the plasma membrane. When cells were treated simultaneously with saturating concentrations of dopamine and Ang II, either activation or inhibition of the Na+,K+-ATPase activity was produced dependent on the intracellular Na+ concentration, which was varied in a very narrow physiological range (9-19 mm). A small increase in intracellular Na+ concentrations induces the recruitment of D1 receptors to the plasma membrane and a reduction in plasma membrane AT1 receptors. Thus, one or more proteins may act as an intracellular Na+ concentration sensor and play a major regulatory role on the effect of hormones that regulate proximal tubule Na+ reabsorption.  相似文献   

15.
In interleukin-2 (IL-2)-induced human blood lymphocytes, the Na+/K+ pump function (assessed by ouabain-sensitive Rb+ influx), the abundance of Na+, K+-ATPase alpha1-subunit (determined by Western blotting) and the alpha1- and beta1-subunits mRNA of Na+, K+-ATPase (RT-PCR), as well as the phosphorylation of STAT5 and STAT3 family proteins and ERK1/2 kinase have been examined. A 3.5-4.0-fold increase in the expression of alpha1- and beta1-subunits mRNA of Na+, K+-ATPase was found at 24 h of IL-2 stimulation. The inhibitors of JAK3 kinase (B-42, WHI-P431) was shown to decrease both the phosphorylation of STATs and the rise in the oubain-sensitive rubidium influx as well as the increased abundance of Na+, K+-ATPase alpha1-subunit. The inhibition of the protein kinases ERK1/2 by PD98059 (20 microM) suppressed the alpha1-subunit accumulation. All the kinase inhibitors tested did not alter the intracellular content ofmonovalent cations in resting and IL-2-stimulated lymphocytes. It is concluded that MAPK and JAK/STAT signaling pathways mediate the IL-2-dependent regulation of the Na+, K+-ATPase expression during the lymphocyte transition from resting stage to proliferation.  相似文献   

16.
The role of Na + transport systems in the mitogenic signal induced by growth factors was studied, and it was shown that two Na + transport systems contribute to the early increase in cytoplasmic Na + in response to serum growth factors, namely the amiloride-sensitive Na+/H+ antiport and the bumetanide-sensitive Na+/K+/Cl- cotransport. Bumetanide or amiloride, when added separately, inhibited part of the increase in cytoplasmic Na +, as a response to the addition of serum to quiescent BALB/c mouse 3T3 fibroblasts. Each drug also suppressed part of the stimulation of the ouabain-sensitive Rb + influx, which was controlled by intracellular Na +. However, when both drugs were added together with serum growth factors, a complete inhibition of the early increase in [Na +], and subsequently a complete blockage of Na+/K+ pump stimulation was obtained. Amiloride or bumetanide, when added separately, only partially inhibited DNA synthesis induced by serum, 24% and 8% respectively. However, when both drugs were added together, at the time of serum addition to the quiescent cells, cell entry into S-phase was completely inhibited. To investigate the mode of cell-cycle inhibition, analysis was done of the possible role of early Na + fluxes in the mitogenic signal transduced from cell membrane receptors to the nucleus. The effects of the two drugs amiloride and bumetanide on induction of three genes--c-fos, c-myc, and ornithin decarboxylase (ODC)--was measured during cell transition through the G1-phase. Amiloride and bumetanide, when added separately or in combination, did not inhibit the induction of c-fos, c-myc, and ODC mRNAs. These results suggest that stimulation of Na + fluxes by serum growth factors is essential for cell transition into the S-phase of cell cycle, but it plays no apparent role in the growth factor signal transduced from the cell surface to the interior of the cell, as manifested by c-fos, c-myc, and ODC genes induction.  相似文献   

17.
1. Gilthead gill 10(-3) M ouabain-inhibited (Na+ + K+)-ATPase and 10(-2) M ouabain-insensitive Na+-ATPase require the optimal conditions of pH 7.0, 160 mM Na+, 20 mM K+, 5 mM MgATP and pH 4.8-5.2, 75 mM Na+, 2.5 mM Mg2+, 1.0 mM ATP, respectively. 2. The main distinctive features between the two activities are confirmed to be optimal pH, the ouabain-sensitivity and the monovalent cation requirement, Na+ plus another cationic species (K+, Rb+, Cs+, NH4+) in the (Na+ + K+)-ATPase and only one species (Na+, K+, Li+, Rb+, Cs+, NH4+ or choline+) in the Na+-ATPase. 3. The aspecific Na+-ATPase activation by monovalent cations, as well as by nucleotide triphosphates, opposed to the (Na+ + K+)-ATPase specificity for ATP and Na+, relates gilthead gill ATPases to lower organism ATPases and differentiates them from mammalian ones. 4. The discrimination between the two activities by the sensitivity to ethacrynic acid, vanadate, furosemide and Ca2+ only partially agrees with the literature. 5. Present findings are viewed on the basis of the ATPase's presumptive physiological role(s) and mutual relationship.  相似文献   

18.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+,K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic "free" calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+,K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+,K+-ATPase by taurine. Normal whole brain homogenate Na+,K+-ATPase activity is 5.1 +/- 0.4 (4) mumol Pi X h-1 X mg-1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+,K+-ATPase activity of 204.6 +/- 5.8 (4) mol Pi X h-1 X mg-1 Lowry protein. Taurine activates the Na+,K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2 = 39 mM taurine, activation maximum = +87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid greater than hypotaurine greater than no activation = beta-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+,K+-ATPase. Its action is mediated by a membrane-bound protein.  相似文献   

19.
The bumetanide-sensitive transport system performed a net efflux of K+ in serum deprived quiescent cells. The addition of partially purified fibroblast growth factor (FGF) to G0/G1 phase 3T3 fibroblasts induced a transient net influx of K+, carried out by the bumetanide-sensitive transport system for 2-6 minutes. The stimulation of the bumetanide-sensitive K+ influx by FGF was followed by stimulation of the ouabain-sensitive K+ influx. In addition, both the bumetanide-sensitive and the ouabain-sensitive K+ influxes were found to be similarly stimulated when the G0/G1 3T3 cells were treated with insulin. These results suggest that growth factors such as FGF and insulin induce a change in the action of the bumetanide-sensitive transporter from performing net K+ efflux along its concentration gradient to an uphill transport pumping of K+ into the cell. We propose, therefore, that the bumetanide-sensitive transporter contributes to the increase in the intracellular K+ (and probable Na+) stimulated by growth factors such as FGF and insulin in early G1 phase of the cell cycle.  相似文献   

20.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号