共查询到20条相似文献,搜索用时 0 毫秒
1.
Takeshi Arimitsu Mutsuo Nuriya Kazushige Ikeda Masato Yasui 《Biochemical and biophysical research communications》2009,387(1):87-16397
Homeostasis of neuronal activity is crucial to neuronal physiology. In dendrites, hyperpolarization-activated cyclic nucleotide-gated channel (HCN) 1 is considered to play critical roles in this process. While electrophysiological studies have demonstrated the dynamic modulation of Ih current mediated by HCN1 proteins, little is known about the underlying molecular and cellular mechanisms. In this study, we utilized cortical cultured neurons and biochemical methods to identify molecular and cellular mechanisms that mediate the physiological regulation of HCN1 channel functions in cortical neurons. Pharmacological manipulations of neuronal activity resulted in changes in the expression level of HCN1. In addition, the surface expression of HCN1 was dynamically regulated by neuronal activity. Both of these changes led to functional modulations of HCN1 channels. Our study suggests that coordinated changes in protein expression and surface expression of HCN1 serve as the key regulatory mechanisms controlling the function of endogenous HCN1 protein in cortical neurons. 相似文献
2.
Bull PM Brown CH Russell JA Ludwig M 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,291(1):R83-R90
Neuropeptide secretion from the dendrites of hypothalamic magnocellular supraoptic nucleus (SON) neurons contributes to the regulation of neuronal activity patterning, which ultimately determines their peptide output from axon terminals in the posterior pituitary gland. SON dendrites also secrete a number of other neuromodulators, including ATP. ATP degrades to adenosine in the extracellular space to complement transported adenosine acting on pre- and postsynaptic SON A1 receptors to reduce neuronal excitability, measured in vitro. To assess adenosine control of electrical activity in vivo, we made extracellular single-unit recordings of the electrical activity of SON neurons in anesthetized male rats. Microdialysis application (retrodialysis) of the A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT) increased phasic vasopressin cell intraburst firing rates progressively over the first 5 s by 4.5 +/- 1.6 Hz (P < 0.05), and increased burst duration by 293 +/- 64% (P < 0.05). Hazard function plots were generated from interval interspike histograms and revealed that these effects were associated with increased postspike excitability. In contrast, CPT had no effect on the firing rates and hazard function plot profiles of continuously active vasopressin and oxytocin cells. However, CPT significantly increased clustering of spikes, as quantified by the index of dispersion, in oxytocin cells and continuously active vasopressin cells (by 267 +/- 113% and 462 +/- 67%, respectively, P < 0.05). Indeed, in 4 of 5 continuously active vasopressin cells, CPT induced a pseudophasic activity pattern. Together, these results indicate that endogenous adenosine is involved in the local control of SON cell activity in vivo. 相似文献
3.
Activity-dependent changes in protein synthesis modify synaptic efficacy. One mechanism that regulates mRNA translation in the synapto-dendritic compartment is cytoplasmic polyadenylation, a process controlled by CPEB, the cytoplasmic polyadenylation element (CPE)-specific RNA binding protein. In neurons, very few mRNAs are known CPEB substrates, and none appear to be responsible for the effects on plasticity that are found in the CPEB knockout mouse. These results suggest that the translation of other mRNAs is regulated by CPEB. To identify them, we have developed a functional assay based on the polyadenylation of brain-derived mRNAs injected into Xenopus oocytes, a surrogate system that carries out this 3' end processing event in an efficient manner. The polyadenylated RNAs were isolated by binding to and thermal elution from poly(U) agarose and identified by microarray analysis. Selected sequences that were positive for polyadenylation were cloned and retested for polyadenylation by injection into oocytes. These sequences were then examined for activity-dependent polyadenylation in cultured hippocampal neurons. Finally, the levels of two proteins encoded by polyadenylated mRNAs were examined in glutamate-stimulated synaptoneurosomes. These studies show that many mRNAs undergo activity-dependent polyadenylation in neurons and that this process coincides with increased translation in the synapto-dendritic compartment. 相似文献
4.
We report on factors affecting the spontaneous firing pattern of the identified serotonin-containing Retzius neurons of the medicinal leech. Increased firing activity induced by intracellular current injection is followed by a ‘post-stimulus-depression’ (PSD) without spiking for up to 23 s. PSD duration depends both on the duration and the amplitude of the injected current and correlates inversely with the spontaneous spiking activity. In contrast to serotonin-containing neurons in mammals, serotonin release from the Retzius cells presumably does not mediate the observed spike suppression in a self-inhibitory manner since robust PSD persists after synaptic isolation. Moreover, single additional spikes elicited at specific delays after spontaneously occurring action potentials are sufficient to significantly alter the firing pattern. Since sub-threshold current injections do not affect the ongoing spiking pattern and PSD persists in synaptically isolated preparations our data suggest that PSD reflects an endogenous and ‘spike-dependent’ mechanism controlling the spiking activity of Retzius cells in a use-dependent way. 相似文献
5.
Large numbers of growth cones were present in 6-day-old primary cultures of cerebral hemispheres from fetal rats. The average size of the growth cones was 24 by 28 microns. Many of these growth cones had both veil-like lamellipodia and filopodia. A few cones remained in 21-day-old cultures. These also had lamellipodia and filopodia. Ganglioside GM1 was present in both 6-day-old and 21-day-old cultured growth cones. 相似文献
6.
7.
In beta-amyloid (Abeta)-induced neurotoxicity, activation of the NMDA receptor, increased Ca2+ and oxidative stress are intimately associated with neuronal cell death as normally seen in NMDA-induced neurotoxicity. We have recently shown selective sparing of somatostatin (SST)-positive neurons and increased SST expression in NMDA agonist-induced neurotoxicity. Accordingly, the present study was undertaken to determine the effect of Abeta25-35-induced neurotoxicity on the expression of SST in cultured cortical neurons. Cultured cortical cells were exposed to Abeta25-35 and processed to determine the cellular content and release of SST into medium by radioimmunoassay and SST mRNA by RT-PCR. Abeta25-35 induces neuronal cell death in a concentration- and time-dependent fashion, increases SST mRNA synthesis and induces an augmentation in the cellular content of SST. No significant changes were seen on SST release at any concentration of Abeta25-35 after 24 h of treatment. However, Abeta25-35 induces a significant increase of SST release into medium only after 12 h in comparison with other time points. Most significantly, SST-positive neurons are selectively spared in the presence of a lower concentration of Abeta25-35, whereas, in the presence of higher concentrations of Abeta25-35 for extended time periods, SST-positive neurons decrease gradually. Furthermore, Abeta25-35 induces apoptosis at lower concentrations (5 and 10 micromol/L) and necrosis at higher concentrations (20 and 40 micromol/L). Consistent with the increased accumulation of SST, these data suggest that Abeta25-35 impairs cell membrane permeability. Selective sparing of SST-positive neurons at lower concentrations of Abeta25-35 at early time points directly correlates with the pathophysiology of Alzheimer's disease. 相似文献
8.
Casey M. Annis Diane K. O'Dowd Richard T. Robertson 《Developmental neurobiology》1994,25(12):1483-1493
In order to examine the effects of activity on spine production and/or maintenance in the cerebral cortex, we have compared the number of dendritic spines on pyramidal neurons in slices of PO mouse somatosensory cortex maintained in organotypic slice cultures under conditions that altered basal levels of spontaneous electrical activity. Cultures chronically exposed to 100 μM picrotoxin (PTX) for 14 days exhibited significantly elevated levels of electrical activity when compared to neurons in control cultures. Pyramidal neurons raised in the presence of PTX showed significantly densities of dendritic spines on primary apical, secondary apical, and secondary basal dendrites when compared to control cultures. The PTX-induced increase in spine density was dose dependent and appeared to saturate at 100 μM. Cultures exhibiting little or no spontaneous activity, as a result of growth in a combination of PTX and tetrodotoxin (TTx), showed significantly fewer dendritic spines compared to cultures maintained in PTX alone. These results demonstrate that the density of spines on layers V and VI pyramidal neurons can be modulated by growth conditions that alter the levels of spontaneous electrical activity. 1994 John Wiley & Sons, Inc. 相似文献
9.
Chiappalone M Vato A Berdondini L Koudelka-Hep M Martinoia S 《International journal of neural systems》2007,17(2):87-103
Neurons extracted from specific areas of the Central Nervous System (CNS), such as the hippocampus, the cortex and the spinal cord, can be cultured in vitro and coupled with a micro-electrode array (MEA) for months. After a few days, neurons connect each other with functionally active synapses, forming a random network and displaying spontaneous electrophysiological activity. In spite of their simplified level of organization, they represent an useful framework to study general information processing properties and specific basic learning mechanisms in the nervous system. These experimental preparations show patterns of collective rhythmic activity characterized by burst and spike firing. The patterns of electrophysiological activity may change as a consequence of external stimulation (i.e., chemical and/or electrical inputs) and by partly modifying the "randomness" of the network architecture (i.e., confining neuronal sub-populations in clusters with micro-machined barriers). In particular we investigated how the spontaneous rhythmic and synchronous activity can be modulated or drastically changed by focal electrical stimulation, pharmacological manipulation and network segregation. Our results show that burst firing and global synchronization can be enhanced or reduced; and that the degree of synchronous activity in the network can be characterized by simple parameters such as cross-correlation on burst events. 相似文献
10.
Kis B Rajapakse NC Snipes JA Nagy K Horiguchi T Busija DW 《Journal of neurochemistry》2003,87(4):969-980
We investigated the effect of diazoxide on neuronal survival in primary cultures of rat cortical neurons against oxygen-glucose deprivation (OGD). Diazoxide pre-treatment induced delayed pre-conditioning and almost entirely attenuated the OGD-induced neuronal death. Diazoxide inhibited succinate dehydrogenase and induced mitochondrial depolarization, free radical production and protein kinase C activation. The putative mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate abolished the protective effect of diazoxide while the non-selective KATP channel blocker glibenclamide did not. The non-selective KATP channel openers nicorandil and cromakalim did not improve viability. Superoxide dismutase mimetic, M40401, or protein kinase C inhibitor, chelerythrine, prevented the neuroprotective effect of diazoxide. Diazoxide did not increase reduced glutathione and manganese-superoxide dismutase levels but we found significantly higher reduced glutathione levels in diazoxide-pre-conditioned neurons after OGD. In pre-conditioned neurons free radical production was reduced upon glutamate stimulation. The succinate dehydrogenase inhibitor 3-nitropropionic acid also induced pre-conditioning and free radical production in neurons. Here, we provide the first evidence that diazoxide induces delayed pre-conditioning in neurons via acute generation of superoxide anion and activation of protein kinases and subsequent attenuation of oxidant stress following OGD. The succinate dehydrogenase-inhibiting effect of diazoxide is more likely to be involved in this neuroprotection than the opening of mitochondrial ATP-sensitive potassium channels. 相似文献
11.
In vivo studies have shown that neurons in the neocortex can generate action potentials at high temporal precision. The mechanisms controlling timing and reliability of action potential generation in neocortical neurons, however, are still poorly understood. Here we investigated the temporal precision and reliability of spike firing in cortical layer V pyramidal cells at near-threshold membrane potentials. Timing and reliability of spike responses were a function of EPSC kinetics, temporal jitter of population excitatory inputs, and of background synaptic noise. We used somatic current injection to mimic population synaptic input events and measured spike probability and spike time precision (STP), the latter defined as the time window (Deltat) holding 80% of response spikes. EPSC rise and decay times were varied over the known physiological spectrum. At spike threshold level, EPSC decay time had a stronger influence on STP than rise time. Generally, STP was highest (6 ms) triggered spikes at lower temporal precision (>or=6.58 ms). We found an overall linear relationship between STP and spike delay. The difference in STP between fast and slow compound EPSCs could be reduced by incrementing the amplitude of slow compound EPSCs. The introduction of a temporal jitter to compound EPSCs had a comparatively small effect on STP, with a tenfold increase in jitter resulting in only a five fold decrease in STP. In the presence of simulated synaptic background activity, precisely timed spikes could still be induced by fast EPSCs, but not by slow EPSCs. 相似文献
12.
Zinc dyshomeostasis in brain might be involved in the pathogenesis of brain diseases such as Alzheimer's disease and stroke. Resting neurons tightly regulate and maintain low to subnanomolar levels of intracellular free Zn2+, but mechanisms of normal Zn2+ homeostasis are poorly understood. In this study, the mechanisms of transporter-mediated Zn2+extrusion across the plasma membrane of cultured cortical neurons were studied. Changes in intracellular free Zn2+ levels were tracked in individual neurons by microfluorometry using a Zn2+ selective fluorophore, FluoZin3. Unopposed Zn2+efflux was measured by first loading cultured cortical neurons with Zn2+ then reducing extracellular Zn2+ to near zero by addition of EDTA. Studies revealed that the primary means of Zn2+ efflux in cortical neurons required both extracellular Na+ and Ca2+. The actions of either Na+ or Ca2+ on Zn2+ efflux were blunted in the absence of the other cation. Reversed Na+ gradients could induce Zn2+ uptake. The Na+ dependence of Zn2+ efflux was not affected by a small pHo shift (7.6-8);whereas an effect of Ca2+ was not observed at pHo 8. In summary, a Na+, Ca2+/Zn2+ exchanger mechanism is proposed to be the primary transport mechanism that extrudes Zn2+ when neuronal intracellular free Zn2+ levels rise. 相似文献
13.
Shintani N Suetake S Hashimoto H Koga K Kasai A Kawaguchi C Morita Y Hirose M Sakai Y Tomimoto S Matsuda T Baba A 《Regulatory peptides》2005,126(1-2):123-128
14.
15.
皮层神经元动作电位不应期和阈电位与神经元动作电位编码的关系 总被引:1,自引:0,他引:1
目的:测量和比较感觉运动皮层Ⅱ/Ⅲ层锥体神经元和中间神经元的内在特性并研究其与动作电位编码频率和精确性的关系。方法:采用全细胞电流钳记录模式,获得的数据输入pClamp和Origin进行处理分析。结果:与锥体神经元相比,中间神经元群集动作电位具有较低的阈电位水平和较短的不应期,从而中间神经元具有较高的动作电位编码频率和精确性。结论:皮层神经元动作电位的阈电位水平和不应期调控动作电位的编码频率和精确性。 相似文献
16.
Gamma-interferon promotes differentiation of cultured cortical and hippocampal neurons 总被引:3,自引:0,他引:3
Clinical and experimental evidence suggests that the development of the brain may be modulated by soluble growth factors traditionally associated with cells of the immune system. As part of an investigation into agents modulating early neural differentiation, we examined the effects of the lymphokine gamma-interferon (IFN-gamma) on the development of cultured cortical and hippocampal neurons from embryonic rats and mice. We report here that recombinant IFN-gamma, at concentrations of 0.2-10 U/ml (50-2500 pg/ml, 3-150 pM), affects the differentiation of embryonic central neurons. IFN-gamma increased the number of cells expressing neurofilament (NF) protein, the growth of primary and secondary neurites on NF-expressing somas, and the extent of cell aggregation observed in culture. IFN-gamma-induced increases in the numbers of NF-positive cells were seen in the virtual absence of differentiated astrocytes, and in mixed neuron-glia cultures. Our results thus indicate that at physiologically relevant concentrations IFN-gamma acts, either directly on neurons and their precursor cells and/or indirectly via nonneuronal cell stimulation, to promote the differentiation of immature neurons. 相似文献
17.
Qiyi Wang Rongjing Ge Sudong Guan Jin-Hui Wang 《Biochemical and biophysical research communications》2009,378(4):706-228
GABAergic neurons play a critical role in maintaining the homeostasis of brain functions for well-organized behaviors. It is not known about the dynamical change in signal encoding at these neurons during postnatal development. We investigated this issue at GFP-labeled GABAergic neurons by whole-cell recording in cortical slices of mice. Our results show that the ability of spike encoding at GABAergic neurons is improved during postnatal development. This change is associated with the reduction of refractory periods and threshold potentials of sequential spikes, as well as the improvement of linear correlations between intrinsic properties and spike capacity. Therefore, the postnatal maturation of the spike encoding capacity at GABAergic neurons will stabilize the excitatory state of cerebral cortex. 相似文献
18.
Blake AD 《Biochemical and biophysical research communications》2004,314(2):501-504
The effects of a clinically useful cardiovascular agent, dipyridamole, were examined in a rodent tissue culture model of neuroprotection. Dipyridamole effectively protected rat embryonic day 18 (E18) cortical neurons from either 48 h trophic deprivation or 48 h exposure to the glutathione synthesis inhibitor, L-buthionine (R,S) sulfoximine. The neuron sparing actions of dipyridamole were time- and concentration-dependent and mimicked the actions of exogenously applied glutathione. These results demonstrate that dipyridamole protects primary neuronal cultures against either trophic or chemically mediated insults, and suggest that dipyridamole has a potent antioxidant ability that compensates for glutathione depletion in neuronal cultures. 相似文献
19.
The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage. 相似文献
20.
Domoki F Kis B Gáspár T Snipes JA Parks JS Bari F Busija DW 《American journal of physiology. Cell physiology》2009,296(1):C97-105
We tested whether rosuvastatin (RST) protected against oxygen-glucose deprivation (OGD)-induced cell death in primary rat cortical neuronal cultures. OGD reduced neuronal viability (%naive controls, mean +/- SE, n = 24-96, P < 0.05) to 44 +/- 1%, but 3-day pretreatment with RST (5 microM) increased survival to 82 +/- 2% (P < 0.05). One-day RST treatment was not protective. RST-induced neuroprotection was abolished by mevalonate or geranylgeranyl pyrophosphate (GGPP), but not by cholesterol coapplication. Furthermore, RST-induced decreases in neuronal cholesterol levels were abolished by mevalonate but not by GGPP. Reactive oxygen species (ROS) levels were reduced in RST-preconditioned neurons after OGD, and this effect was also reversed by both mevalonate and GGPP. These data suggested that GGPP, but not cholesterol depletion, were responsible for the induction of neuroprotection. Therefore, we tested whether 3-day treatments with perillic acid, a nonspecific inhibitor of both geranylgeranyl transferase (GGT) GGT 1 and Rab GGT, and the GGT 1-specific inhibitor GGTI-286 would reproduce the effects of RST. Perillic acid, but not GGTI-286, elicited robust neuronal preconditioning against OGD. RST, GGTI-286, and perillic acid all decreased mitochondrial membrane potential and lactate dehydrogenase activity in the cultured neurons, but only RST and perillic acid reduced neuronal ATP and membrane Rab3a protein levels. In conclusion, RST preconditions cultured neurons against OGD via depletion of GGPP, leading to decreased geranylgeranylation of proteins that are probably not isoprenylated by GGT 1. Reduced neuronal ATP levels and ROS production after OGD may be directly involved in the mechanism of neuroprotection. 相似文献