共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical identification of branched intron side-products of splicing in Trypanosoma brucei. 总被引:7,自引:2,他引:7
Every mRNA in trypanosomes consists of two exons, a common 5' capped mini-exon or spliced leader and a coding-exon. All evidence suggests that the exons are joined by trans-splicing of two individual precursor RNAs, the mini-exon donor RNA or spliced leader precursor RNA (medRNA) and the pre-mRNA. We studied intermediates of the splicing reaction using denaturing two-dimensional PAGE and structurally identified a group of small (approximately 180-300 nt) non-polyadenylated, Y-shaped branched RNAs. The branched Y-shaped RNAs contain the 105 nt medRNA derived intron, joined in a 2'-5' phosphodiester bond to small heterogeneously sized RNAs. These non-polyadenylated branched Y-shaped RNA molecules are analogous to the lariat shaped introns of higher eukaryotes and presumably represent the released intron-like by-products of a trans-splicing reaction which joins the mini-exon and the major coding-exon. 相似文献
2.
3.
Protozoan Kinetoplastida, a group that comprises the pathogenic Trypanosoma brucei, compartmentalize several metabolic systems such as the major part of the glycolytic pathway, in multiple peroxisome-like organelles, designated glycosomes. Trypanosomes have a complicated life cycle, involving two major, distinct stages living in the mammalian bloodstream and several stages inhabiting different body parts of the tsetse fly. Previous studies on non-differentiating trypanosomes have shown that the metabolism and enzymatic contents of glycosomes in bloodstream-form and cultured procyclic cells, representative of the stage living in the insect's midgut, differ considerably. In this study, the morphology of glycosomes and their position relative to the lysosome were followed, as were the levels of some glycosomal enzymes and markers for other subcellular compartments, during the differentiation from bloodstream-form to procyclic trypanosomes. Our studies revealed a small tendency of glycosomes to associate with the lysosome when a population of long-slender bloodstream forms differentiated into short-stumpy forms which are pre-adapted to live in the fly. The same phenomenon was observed during the short-stumpy to procyclic transformation, but then the process was fast and many more glycosomes were associated with the dramatically enlarged degradation organelle. The observations suggested an efficient glycosome turnover involving autophagy. Changes observed in the levels of marker enzymes are consistent with the notion that, during differentiation, glycosomes with enzymatic contents specific for the old life-cycle stage are degraded and new glycosomes with different contents are synthesized, causing that the metabolic repertoire of trypanosomes is, at each stage, optimally adapted to the environmental conditions encountered. 相似文献
4.
Gowdham Manivel Arun Meyyazhagan Ruban Durairaj D Shanmughavel Piramanayagam 《Genomics》2019,111(5):1124-1133
Trypanosoma brucei brucei (T.b.brucei) is an extra-cellular parasite that causes Animal African Trypanosomiasis (AAT) disease in animals. Till day, this disease is more difficult to treat and control due to lack of efficient vaccines and early diagnosis of the parasite infection. T.b.brucei Excretory/Secretory (ES) proteins were involved in pathogenesis and key for understanding the host-parasite interactions. Functions of T.b.brucei's ES proteins were poorly investigated and experimental identification is expensive and time-consuming. Bioinformatics approaches are cost-effective by facilitating the experimental analysis of potential drug targets for parasitic diseases. Here we applied several bioinformatics tools to predict and functionalize the annotation of 1104 ES proteins and immunoinformatics approaches carried out to predict and evaluate the epitopes in T.b.brucei. Secretory information, functional annotations and potential epitopes of each ES proteins were available at http://tbb.insilico.in. This study provides functional information of T.b.brucei for experimental studies to identify potential targets for diagnosis and therapeutics development. 相似文献
5.
Aurora-B kinase is a chromosomal passenger protein essential for chromosome segregation and cytokinesis. In the procyclic form of Trypanosoma brucei, depletion of an aurora-B kinase homologue TbAUK1 inhibited spindle formation, mitosis, cytokinesis, and organelle replication without altering cell morphology. In the present study, an RNA interference knockdown of TbAUK1 or overexpression of inactive mutant TbAUK1-K58R in the bloodstream form also resulted in defects in spindle formation, chromosome segregation, and cytokinesis but allowed multiple rounds of nuclear DNA synthesis, nucleolus multiplication, and continuous replication of kinetoplast, basal body, and flagellum. The typical trypanosome morphology was lost to an enlarged round shape filled with microtubules. It is thus apparent that there are distinctive mechanisms of action of TbAUK1 in regulating cell division between the two developmental stages of trypanosome. While it exerts a tight control on mitosis, organelle replication, and cytokinesis in the procyclic form, it regulates cytokinesis without rigid control over either nuclear DNA synthesis or organelle replication in the bloodstream form. The molecular basis underlining these discrepancies remains to be explored. 相似文献
6.
7.
8.
Transcription analysis in Trypanosoma brucei 总被引:2,自引:0,他引:2
A W Cornelissen S Backes R Evers E J Grondal W Jess J K?ck 《Biochemical Society transactions》1990,18(5):710-714
9.
Hertz-Fowler C Figueiredo LM Quail MA Becker M Jackson A Bason N Brooks K Churcher C Fahkro S Goodhead I Heath P Kartvelishvili M Mungall K Harris D Hauser H Sanders M Saunders D Seeger K Sharp S Taylor JE Walker D White B Young R Cross GA Rudenko G Barry JD Louis EJ Berriman M 《PloS one》2008,3(10):e3527
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology. 相似文献
10.
11.
12.
13.
Fisk JC Ammerman ML Presnyak V Read LK 《The Journal of biological chemistry》2008,283(34):23016-23025
In the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, RNA editing inserts and/or deletes uridines from pre-mRNAs to produce mature, translatable mRNAs. RNA editing is carried out by several related multiprotein complexes known as editosomes, which contain all of the enzymatic components required for catalysis of editing. In addition, noneditosome accessory factors necessary for editing of specific RNAs have also been described. Here, we report the in vitro and in vivo characterization of the mitochondrial TbRGG2 protein (originally termed TbRGGm) and demonstrate that it acts as an editing accessory factor. TbRGG2 is an RNA-binding protein with a preference for poly(U). TbRGG2 protein levels are up-regulated 10-fold in procyclic form T. brucei compared with bloodstream forms. Nevertheless, the protein is essential for growth in both life cycle stages. TbRGG2 associates with RNase-sensitive and RNase-insensitive mitochondrial complexes, and a small fraction of the protein co-immunoprecipitates with editosomes. RNA interference-mediated depletion of TbRGG2 in both procyclic and bloodstream form T. brucei leads to a dramatic decrease in pan-edited RNAs and in some cases a corresponding increase in the pre-edited RNA. TbRGG2 down-regulation also results in moderate stabilization of never-edited and minimally edited RNAs. Thus, our data are consistent with a model in which TbRGG2 is multifunctional, strongly facilitating the editing of pan-edited RNAs and modestly destabilizing minimally edited and never-edited RNAs. This is the first example of an RNA editing accessory factor that functions in the mammalian infective T. brucei life cycle stage. 相似文献
14.
15.
mRNA maturation in Trypanosoma brucei depends upon trans splicing, and variations in trans-splicing efficiency could be an important step in controlling the levels of individual mRNAs. RNA splicing requires specific sequence elements, including conserved 5' splice sites, branch points, pyrimidine-rich regions [poly(Y) tracts], 3' splice sites (3'SS), and sometimes enhancer elements. To analyze sequence requirements for efficient trans splicing in the poly(Y) tract and around the 3'SS, we constructed a luciferase-beta-galactosidase double-reporter system. By testing approximately 90 sequences, we demonstrated that the optimum poly(Y) tract length is approximately 25 nucleotides. Interspersing a purely uridine-containing poly(Y) tract with cytidine resulted in increased trans-splicing efficiency, whereas purines led to a large decrease. The position of the poly(Y) tract relative to the 3'SS is important, and an AC dinucleotide at positions -3 and -4 can lead to a 20-fold decrease in trans splicing. However, efficient trans splicing can be restored by inserting a second AG dinucleotide downstream, which does not function as a splice site but may aid in recruitment of the splicing machinery. These findings should assist in the development of improved algorithms for computationally identifying a 3'SS and help to discriminate noncoding open reading frames from true genes in current efforts to annotate the T. brucei genome. 相似文献
16.
Genome-wide analysis of alternative pre-mRNA splicing 总被引:4,自引:0,他引:4
Ben-Dov C Hartmann B Lundgren J Valcárcel J 《The Journal of biological chemistry》2008,283(3):1229-1233
17.
18.
19.
J H Gommers-Ampt A J Teixeira G van de Werken W J van Dijk P Borst 《Nucleic acids research》1993,21(9):2039-2043
We have previously reported the detection of two unusual nucleotides, pdJ and pdV, in the DNA of Trypanosoma brucei (Gommers-Ampt et al., 1991). pdJ was found to be a novel nucleotide and is possibly involved in the regulation of variant specific surface antigen gene expression in trypanosomes. Recent evidence suggests that V could be a precursor of J, making V a key compound in the study of the biosynthesis and function of J. We have therefore determined the structure of V and here we present proof that V is HOMeU. The identity is based on a detailed comparison of dV(p) with authentic HOMedU(p), showing: I) co-migration in three different liquid chromatography analyses II) identical UV absorbance characteristics III) identical behavior in acetyl-pentafluorobenzyl derivatization and subsequent Gas chromatography/Mass spectrometry (GC/MS). The GC/MS technique has not been used before to analyse HOMedU purified from biological material. Because of its high sensitivity, it may also be useful for the detection of the low amounts of HOMedU resulting from oxidative damage of DNA. 相似文献