首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Repeated mass azithromycin distributions are effective in controlling the ocular strains of chlamydia that cause trachoma. However, it is unclear when treatments can be discontinued. Investigators have proposed graduating communities when the prevalence of infection identified in children decreases below a threshold. While this can be tested empirically, results will not be available for years. Here we use a mathematical model to predict results with different graduation strategies in three African countries.

Methods

A stochastic model of trachoma transmission was constructed, using the parameters with the maximum likelihood of obtaining results observed from studies in Tanzania (with 16% infection in children pre-treatment), The Gambia (9%), and Ethiopia (64%). The expected prevalence of infection at 3 years was obtained, given different thresholds for graduation and varying the characteristics of the diagnostic test.

Results

The model projects that three annual treatments at 80% coverage would reduce the mean prevalence of infection to 0.03% in Tanzanian, 2.4% in Gambian, and 12.9% in the Ethiopian communities. If communities graduate when the prevalence of infection falls below 5%, then the mean prevalence at 3 years with the new strategy would be 0.3%, 3.9%, and 14.4%, respectively. Graduations reduced antibiotic usage by 63% in Tanzania, 56% in The Gambia, and 11% in Ethiopia.

Conclusion

Models suggest that graduating communities from a program when the infection is reduced to 5% is a reasonable strategy and could reduce the amount of antibiotic distributed in some areas by more than 2-fold.  相似文献   

2.

Background

As part of the SAFE strategy, mass antibiotic treatments are useful in controlling the ocular strains of chlamydia that cause trachoma. The World Health Organization recommends treating at least 80% of individuals per community. However, the role of antibiotic coverage for trachoma control has been poorly characterized.

Methodology/Principal Findings

In a collection of cluster-randomized clinical trials, mass oral azithromycin was administered to 40 villages in Ethiopia. The village prevalence of ocular chlamydia was determined before treatment, and at two and six months post-treatment. The mean prevalence of ocular chlamydia was 48.9% (95% CI 42.8 to 55.0%) before mass treatments, decreased to 5.4% (95% CI 3.9 to 7.0%) at two months after treatments (p<0.0001), and returned to 7.9% (95% CI 5.4 to 10.4%) by six months after treatment (p = 0.03). Antibiotic coverage ranged from 73.9% to 100%, with a mean of 90.6%. In multivariate regression models, chlamydial prevalence two months after treatment was associated with baseline infection (p<0.0001) and antibiotic coverage (p = 0.007). However, by six months after treatment, chlamydial prevalence was associated only with baseline infection (p<0.0001), but not coverage (p = 0.31).

Conclusions/Significance

In post-hoc analyses of a large clinical trial, the amount of endemic chlamydial infection was a strong predictor of chlamydial infection after mass antibiotic treatments. Antibiotic coverage was an important short-term predictor of chlamydial infection, but no longer predicted infection by six months after mass antibiotic treatments. A wider range of antibiotic coverage than found in this study might allow an assessment of a more subtle association.  相似文献   

3.
《Life sciences》1997,61(24):PL361-PL371
Dopamine is known as a precursor of catecholamine and one of the neurotransmitters in brain and peripheral tissues. Recent studies suggest an important role of dopamine in immune responses. In the present study, intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which lowered endogenous dopamine suppressed splenocyte proliferation in response to mitogens such as lipopolysaccharide (LPS) and concanavalin A (Con A). Moreover, intravenous injection of the specific agonists of dopamine DA-1 receptor (SKF38393) or DA-2 receptor (LY171555) into mice enhanced the splenocyte proliferation stimulated by LPS or Con A. In the in vitro cultures, dopamine, SKF38393 and LY171555 directly promoted cell proliferation to LPS or Con A. These results indicate that dopamine has an ability to regulate B- and T-cell proliferation both in vivo and in vitro.  相似文献   

4.

Background

Seven genes involved in folate metabolism are located on chromosome 21. Previous studies have shown that folate deficiency may contribute to mental retardation in Down''s syndrome (DS).

Methodology

We investigated the effect of oral folate supplementation (daily dose of 1.0±0.3 mg/kg) on cognitive functions in DS children, aged from 3 to 30 months. They received 1 mg/kg leucovorin or placebo daily, for 12 months, in a single-centre, randomised, double-blind study. Folinic acid (leucovorin, LV) was preferred to folic acid as its bioavailability is higher. The developmental age (DA) of the patients was assessed on the Brunet-Lezine scale, from baseline to the end of treatment.

Results

The intent-to-treat analysis (113 patients) did not show a positive effect of leucovorin treatment. However, it identified important factors influencing treatment effect, such as age, sex, and concomitant treatments, including thyroid treatment in particular. A per protocol analysis was carried out on patients evaluated by the same examiner at the beginning and end of the treatment period. This analysis of 87 patients (43 LV-treated vs. 44 patients on placebo) revealed a positive effect of leucovorin on developmental age (DA). DA was 53.1% the normal value with leucovorin and only 44.1% with placebo (p<0.05). This positive effect of leucovorin was particularly strong in patients receiving concomitant thyroxin treatment (59.5% vs. 41.8%, p<0.05). No adverse event related to leucovorin was observed.

Conclusion

These results suggest that leucovorin improves the psychomotor development of children with Down''s syndrome, at least in some subgroups of the DS population, particularly those on thyroxin treatment.

Trial Registration

ClinicalTrials.gov, NCT00294593  相似文献   

5.

Background

PCR has evolved into one of the most promising tools for T. cruzi detection in the diagnosis and control of Chagas disease. However, general use of the technique is hampered by its complexity and the lack of standardization.

Methodology

We here present the development and phase I evaluation of the T. cruzi OligoC-TesT, a simple and standardized dipstick format for detection of PCR amplified T. cruzi DNA. The specificity and sensitivity of the assay were evaluated on blood samples from 60 Chagas non-endemic and 48 endemic control persons and on biological samples from 33 patients, 7 reservoir animals, and 14 vectors collected in Chile.

Principal Findings

The lower detection limits of the T. cruzi OligoC-TesT were 1 pg and 1 to 10 fg of DNA from T. cruzi lineage I and II, respectively. The test showed a specificity of 100% (95% confidence interval [CI]: 96.6%–100%) on the control samples and a sensitivity of 93.9% (95% CI: 80.4%–98.3%), 100% (95% CI: 64.6%–100%), and 100% (95% CI: 78.5%–100%) on the human, rodent, and vector samples, respectively.

Conclusions

The T. cruzi OligoC-TesT showed high sensitivity and specificity on a diverse panel of biological samples. The new tool is an important step towards simplified and standardized molecular diagnosis of Chagas disease.  相似文献   

6.

Background

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite.

Methods

Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays.

Results

CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity.

Conclusion

This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.  相似文献   

7.

Background

Melanoma metastasis status is highly associated with the overall survival of patients; yet, little is known about proteomic changes during melanoma tumor progression. To better understand the changes in protein expression involved in melanoma progression and metastasis, and to identify potential biomarkers, we conducted a global quantitative proteomic analysis on archival metastatic and primary melanomas.

Methodology and Findings

A total of 16 metastatic and 8 primary cutaneous melanomas were assessed. Proteins were extracted from laser captured microdissected formalin fixed paraffin-embedded archival tissues by liquefying tissue cells. These preparations were analyzed by a LC/MS-based label-free protein quantification method. More than 1500 proteins were identified in the tissue lysates with a peptide ID confidence level of >75%. This approach identified 120 significant changes in protein levels. These proteins were identified from multiple peptides with high confidence identification and were expressed at significantly different levels in metastases as compared with primary melanomas (q-Value<0.05).

Conclusions and Significance

The differentially expressed proteins were classified by biological process or mapped into biological system networks, and several proteins were implicated by these analyses as cancer- or metastasis-related. These proteins represent potential biomarkers for tumor progression. The study successfully identified proteins that are differentially expressed in formalin fixed paraffin-embedded specimens of metastatic and primary melanoma.  相似文献   

8.

Background

Presentation of peptides on Major Histocompatibility Complex (MHC) molecules is the cornerstone in immune system activation and increased knowledge of the characteristics of MHC ligands and their source proteins is highly desirable.

Methodology/Principal Finding

In the present large-scale study, we used a large data set of proteins containing experimentally identified MHC class I or II ligands and examined the proteins according to their expression profiles at the mRNA level and their Gene Ontology (GO) classification within the cellular component ontology. Proteins encoded by highly abundant mRNA were found to be much more likely to be the source of MHC ligands. Of the 2.5% most abundant mRNAs as much as 41% of the proteins encoded by these mRNAs contained MHC class I ligands. For proteins containing MHC class II ligands, the corresponding percentage was 11%. Furthermore, we found that most proteins containing MHC class I ligands were localised to the intracellular parts of the cell including the cytoplasm and nucleus. MHC class II ligand donors were, on the other hand, mostly membrane proteins.

Conclusions/Significance

The results contribute to the ongoing debate concerning the nature of MHC ligand-containing proteins and can be used to extend the existing methods for MHC ligand predictions by including the source protein''s localisation and expression profile. Improving the current methods is important in the growing quest for epitopes that can be used for vaccine or diagnostic purposes, especially when it comes to large DNA viruses and cancer.  相似文献   

9.

Background

Antibiotics are a major tool in the WHO''s trachoma control program. Even a single mass distribution reduces the prevalence of the ocular chlamydia that causes trachoma. Unfortunately, infection returns after a single treatment, at least in severely affected areas. Here, we test whether additional scheduled treatments further reduce infection, and whether infection returns after distributions are discontinued.

Methods

Sixteen communities in Ethiopia were randomly selected. Ocular chlamydial infection in 1- to 5-year-old children was monitored over four biannual azithromycin distributions and for 24 months after the last treatment.

Findings

The average prevalence of infection in 1- to 5-year-old children was reduced from 63.5% pre-treatment to 11.5% six months after the first distribution (P<0.0001). It further decreased to 2.6% six months after the fourth and final treatment (P = 0.0004). In the next 18 months, infection returned to 25.2%, a significant increase from six months after the last treatment (P = 0.008), but still far lower than baseline (P<0.0001). Although the prevalence of infection in any particular village fluctuated, the mean prevalence of the 16 villages steadily decreased with each treatment and steadily returned after treatments were discontinued.

Conclusion

In some of the most severely affected communities ever studied, we demonstrate that repeated mass oral azithromycin distributions progressively reduce ocular chlamydial infection in a community, as long as these distributions are given frequently enough and at a high enough coverage. However, infection returns into the communities after the last treatment. Sustainable changes or complete local elimination of infection will be necessary.

Trial Registration

ClinicalTrials.gov NCT00221364  相似文献   

10.

Objectives

This study examined alterations in the functions and proteome of high-density lipoprotein (HDL) subfractions (HDL2 and HDL3) isolated from patients with acute coronary syndrome (ACS) compared with control subjects.

Methods

We measured HDL subfraction cholesterol efflux capacity, inflammatory index (HII), paraoxonase-1 (PON1) activity, and lipid hydroperoxide (LOOH) levels in both male age-matched controls and the ACS group (n = 40/group). Additionally, proteomic analysis was used to monitor changes in the HDL subfraction proteome between controls and ACS subjects.

Results

Both HDL2 and HDL3 from ACS patients had greater HII and LOOH levels compared with controls (P<0.001); PON1 activity and cholesterol efflux capacity in both HDL2 and HDL3 from the ACS group were significantly less than those of controls (P<0.001). Using proteomic analysis, we demonstrated that, compared with the control group, nine proteins were selectively enriched in HDL3 from subjects with ACS, and ras-related protein Rab-7b was decreased in HDL3. Additionally, in the ACS subjects, 12 proteins were decreased in HDL2 and 4 proteins were increased in HDL2.

Conclusions

Functional HDL subfractions shifted to dysfunctional HDL subfractions during ACS, and the functional impairment was linked to remodeled protein cargo in HDL subfractions from ACS patients.  相似文献   

11.

Background

Neurocysticercosis accounts for 30%–50% of all late-onset epilepsy in endemic countries. We assessed the clustering patterns of Taenia solium human cysticercosis seropositivity and seizures around tapeworm carriers in seven rural communities in Peru.

Methodology

The presence of T. solium–specific antibodies was defined as one or more positive bands in the enzyme-linked immunoelectrotransfer blot (EITB). Neurocysticercosis-related seizures cases were diagnosed clinically and had positive neuroimaging or EITB.

Principal Findings

Eleven tapeworm carriers were identified by stool microscopy. The seroprevalence of human cysticercosis was 24% (196/803). Seroprevalence was 21% >50 m from a carrier and increased to 32% at 1–50 m (p = 0.047), and from that distance seroprevalence had another significant increase to 64% at the homes of carriers (p = 0.004). Seizure prevalence was 3.0% (25/837) but there were no differences between any pair of distance ranges (p = 0.629, Wald test 2 degrees of freedom).

Conclusion/Significance

We observed a significant human cysticercosis seroprevalence gradient surrounding current tapeworm carriers, although cysticercosis-related seizures did not cluster around carriers. Due to differences in the timing of the two outcomes, seroprevalence may reflect recent T. solium exposure more accurately than seizure frequency.  相似文献   

12.

Background

Chikungunya is a highly debilitating febrile illness caused by Chikungunya virus, a single-stranded RNA virus, which is transmitted by Aedes aegypti or Aedes albopictus mosquito species. The pathogenesis and host responses in individuals infected with the chikungunya virus are not well understood at the molecular level. We carried out proteomic profiling of serum samples from chikungunya patients in order to identify molecules associated with the host response to infection by this virus.

Results

Proteomic profiling of serum obtained from the infected individuals resulted in identification of 569 proteins. Of these, 63 proteins were found to be differentially expressed (≥ 2-fold) in patient as compared to control sera. These differentially expressed proteins were involved in various processes such as lipid metabolism, immune response, transport, signal transduction and apoptosis.

Conclusions

This is the first report providing a global proteomic profile of serum samples from individuals infected with the chikungunya virus. Our data provide an insight into the proteins that are involved as host response factors during an infection. These proteins include clusterin, apolipoproteins and S100A family of proteins.  相似文献   

13.
14.

Background

The polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) have been recently modified by coupling to oligochromatography (OC) for easy and fast visualisation of products. In this study we evaluate the sensitivity and specificity of the PCR-OC and NASBA-OC for diagnosis of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense human African trypanosomiasis (HAT).

Methodology and Results

Both tests were evaluated in a case-control design on 143 HAT patients and 187 endemic controls from the Democratic Republic of Congo (DRC) and Uganda. The overall sensitivity of PCR-OC was 81.8% and the specificity was 96.8%. The PCR-OC showed a sensitivity and specificity of 82.4% and 99.2% on the specimens from DRC and 81.3% and 92.3% on those from Uganda. NASBA-OC yielded an overall sensitivity of 90.2%, and a specificity of 98.9%. The sensitivity and specificity of NASBA-OC on the specimens from DRC was 97.1% and 99.2%, respectively. On the specimens from Uganda we observed a sensitivity of 84.0% and a specificity of 98.5%.

Conclusions/Significance

The tests showed good sensitivity and specificity for the T. b. gambiense HAT in DRC but rather a low sensitivity for T. b. rhodesiense HAT in Uganda.  相似文献   

15.

Background

Resistance to trastuzumab is a clinical problem, partly due to overriding activation of MAPK/PI3K signalling. Sprouty-family proteins are negative regulators of MAPK/PI3K signalling, but their role in HER2-therapy resistance is unknown.

Patients and Methods

Associations between Sprouty gene expression and clinicopathological features were investigated in a breast cancer microarray meta-analysis. Changes in expression of Spry2 and feedback inhibition on trastuzumab resistance were studied in SKBr3 and BT474 breast carcinoma cell lines using cell viability assays. Spry2 protein expression was measured by quantitative immunofluorescence in a cohort of 122 patients treated with trastuzumab.

Results

Low gene expression of Spry2 was associated with increased pathological grade, high HER2 expression, and was a significant independent prognostic factor. Overexpression of Spry2 in SKBr3s resulted in enhanced inhibition of cell viability after trastuzumab treatment, and the PI3K-inhibitor LY294002 had a similar effect. Low Spry2 expression was associated with increased risk of death (HR = 2.28, 95% CI 1.22–4.26; p = 0.008) in trastuzumab-treated patients, including in multivariate analysis. Stratification of trastuzumab-treated patients using PTEN and Spry2 was superior to either marker in isolation.

Conclusion

In breast cancers with deficient feedback inhibition, combinatorial therapy with negative regulators of growth factor signalling may be an effective therapeutic strategy.  相似文献   

16.

Background

Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection.

Results

We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism.

Conclusions

Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-39) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromized hosts, can cause fatal infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately characterize the T. gondii proteome.

Methodology/Principal Findings

We have explored the proteome of T. gondii tachyzoites with high throughput proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T. gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%.

Conclusions/Significance

This study not only provides the largest proteomics exploration of the T. gondii proteome, but illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes.  相似文献   

18.
19.

Background

Neuroinflammation plays an important role in the pathogenesis of Parkinson’s disease (PD), inducing and accelerating dopaminergic (DA) neuron loss. Autophagy, a critical mechanism for clearing misfolded or aggregated proteins such as α-synuclein (α-SYN), may affect DA neuron survival in the midbrain. However, whether autophagy contributes to neuroinflammation-induced toxicity in DA neurons remains unknown.

Results

Intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) into young (3-month-old) and aged (16-month-old) male C57BL/6J mice was observed to cause persistent neuroinflammation that was associated with a delayed and progressive loss of DA neurons and accumulation of α-SYN in the midbrain. The autophagic substrate-p62 (SQSTM1) persistently increased, whereas LC3-II and HDAC6 exhibited early increases followed by a decline. In vitro studies further demonstrated that TNF-α induced cell death in PC12 cells. Moreover, a sublethal dose of TNF-α (50 ng/ml) increased the expression of LC3-II, p62, and α-SYN, implying that TNF-α triggered autophagic impairment in cells.

Conclusion

Neuroinflammation may cause autophagic impairment, which could in turn result in DA neuron degeneration in midbrain.  相似文献   

20.

Background

Tissue invasion or tissue infiltration are clinical behaviors of a poor-prognosis subset of meningiomas. We carried out proteomic analyses of tissue extracts to discover new markers to accurately distinguish between infiltrative and noninfiltrative meningiomas.

Methodology/Principal Findings

Protein lysates of 64 different tissue samples (including two brain-invasive and 32 infiltrative tumors) were submitted to SELDI-TOF mass spectrometric analysis. Mass profiles were used to build up both unsupervised and supervised hierarchical clustering. One marker was found at high levels in noninvasive and noninfiltrative tumors and appeared to be a discriminative marker for clustering infiltrative and/or invasive meningiomas versus noninvasive meningiomas in two distinct subsets. Sensitivity and specificity were 86.7% and 100%, respectively. This marker was purified and identified as a multiphosphorylated form of vimentin, a cytoskeletal protein expressed in meningiomas.

Conclusions/Significance

Specific forms of vimentin can be surrogate molecular indicators of the invasive/infiltrative phenotype in tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号