首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trioecy is an uncommon sexual system in which males, females, and hermaphrodites co-occur as three clearly different gender classes. The evolutionary stability of trioecy is unclear, but would depend on factors such as hermaphroditic sex allocation and rates of outcrossing vs. selfing. Here, trioecious populations of Mercurialis annua are described for the first time. We examined the frequencies of females, males and hermaphrodites across ten natural populations and evaluated the association between the frequency of females and plant densities. Previous studies have shown that selfing rates in this species are density-dependent and are reduced in the presence of males, which produce substantially more pollen than hermaphrodites. Accordingly, we examined the evolutionary stability of trioecy using an experiment in which we (a) indirectly manipulated selfing rates by altering plant densities and the frequency of males in a fully factorial manner across 20 experimental plots and (b) examined the effect of these manipulations on the frequency of the three sex phenotypes in the next generation of plants. In the parental generation, we measured the seed and pollen allocations of hermaphrodites and compared them with allocations by unisexual plants. In natural populations, females occurred at higher frequencies in denser patches, a finding consistent with our expectations. Under our experimental conditions, however, no combination of plant densities and male frequencies was associated with increased frequencies of females. Our results suggest that the factors that regulate female frequencies in trioecious populations of M. annua are independent of those regulating male frequencies (density), and that the stable co-existence of all three sex phenotypes within populations is unlikely.  相似文献   

2.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

3.
There has been very little empirical study of quantitative genetic variation in flower size in sexually dimorphic plant species, despite the frequent occurrence of flower size differences between sexual phenotypes. In this study we quantify the nature of quantitative flower size variation in females and hermaphrodites of gynodioecious Thymus vulgaris. In a field study, females had significantly smaller flowers than hermaphrodites, and the degree of flower size dimorphism varied significantly among populations. To quantify the genetic basis of flower size variation we sampled maternal progeny from 10 F0 females in three populations (across the range of variation in flower size in the field), performed controlled crosses on F1 offspring in the glasshouse and grew F2 progeny to flowering in uniform field conditions. A significant population * sex interaction was again observed, hence the degree of sexual dimorphism shows genetic variation among populations. A significant family * sex interaction was also observed, indicating that the degree of sexual dimorphism shows genetic variation among families. Females showed significantly greater variation among populations and among families than hermaphrodites. Female flower size varied significantly depending on the degree of stamen abortion, with morphologically intermediate females having flowers more similar to hermaphrodites than to other females. The frequency of female types that differ in the degree of stamen abortion varied among populations and families and mean family female flower size increased as the proportion of intermediate female types increased across families. Variation in the degree of flower size dimorphism thus appears to be a result of variation in the degree of stamen abortion in females, the potential causes of which are discussed.  相似文献   

4.
Abstract To understand how genetic constraints may limit the evolution of males and sexual dimorphism in a gynodioecious species, I conducted a quantitative genetic experiment in a gynodioecious wild strawberry, Fragaria virginiana . I estimated and compared genetic parameters (narrow-sense heritabilities, between-trait and between-sex genetic correlations, as well as phenotypic and genetic variance-covariance matrices) in the two sex morphs from three populations grown in a common field garden. I measured pollen and ovule production per flower, petal size, fruit set, and flower number. My major findings are as follows. (1) The presence of a phenotypic trade-off between pollen production and fruit set in hermaphrodites reflects a negative genetic correlation in the narrow sense that is statistically significant when pooled across populations. (2) The main constraints on the evolution of males are low genetic variation for pollen per flower and strong positive correlations associated with ovule number (e.g., between pollen and ovules in hermaphrodites, and between ovules in hermaphrodites and females). (3) Traits with the lowest levels of sexual dimorphism (ovule number and flower number) have the highest between-sex genetic correlations suggesting that overlap in the expression of genes in the sex morphs constrains their independent evolution. (4) There are significant differences in G matrices between sex morphs but not among populations. However, evidence that male-female trait correlations in hermaphrodites were lower in populations with higher frequencies of females may indicate subtle changes in genetic architecture.  相似文献   

5.
Hybridization and polyploidy are widely believed to be important sources of evolutionary novelty in plant evolution. Both can lead to novel gene combinations and/or novel patterns of gene expression, which in turn provide the variation on which natural selection can act. Here, we use nuclear and plastid gene trees, in conjunction with morphological data and genome size measurements, to show that both processes have been important in shaping the evolution of the angiosperm genus Mercurialis, particularly a clade of annual lineages that shows exceptional variation in the sexual system. Our results indicate that hexaploid populations of M. annua, in which the rare sexual system androdioecy is common (the occurrence of males and hermaphrodites) is of allopolyploid origin involving hybridization between an autotetraploid lineage of M. annua and the related diploid species M. huetii. We discuss the possibility that androdioecy may have evolved as a result of hybridization between dioecious M. huetii and monoecious tetraploid M. annua, an event that brought together the genes for specialist males with those for hermaphrodites.  相似文献   

6.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

7.
Flowering plants are able to develop gametes throughout their lives. As a consequence, environmental conditions can impact this development and alter a plant's functional gender or the degree to which it achieves fitness through male or female function. Two dimorphic breeding systems are widespread among angiosperm families: gynodioecy (hermaphrodites and females) and dioecy (males and females). Gynodioecy can evolve into dioecy, via loss of female function on the hermaphrodites, or it can remain stable. Here I discuss how developmental plasticity of gender can impact the sex ratio of populations and thereby influence the transition of one breeding system into another. I review studies showing that greater plasticity of fruit production by hermaphrodites as compared with females causes sex ratios among populations to vary in response to environmental conditions, with higher female frequency expected in harsh or low-quality sites. I also review how dioecy may evolve in dry sites to avoid inbreeding and any consequent inbreeding depression. Taken together, these studies show the importance of understanding how ecological development affects functional gender and consequently the evolutionary stability or malleability of dimorphic breeding systems.  相似文献   

8.
Adult sex ratio (ASR) is a central concept in population demography and breeding system evolution, and has implications for population viability and biodiversity conservation. ASR exhibits immense interspecific variation in wild populations, although the causes of this variation have remained elusive. Using phylogenetic analyses of 187 avian species from 59 families, we show that neither hatching sex ratios nor fledging sex ratios correlate with ASR. However, sex-biased adult mortality is a significant predictor of ASR, and this relationship is robust to 100 alternative phylogenetic hypotheses, and potential ecological and life-history confounds. A significant component of adult mortality bias is sexual selection acting on males, whereas increased reproductive output predicts higher mortality in females. These results provide the most comprehensive insights into ASR variation to date, and suggest that ASR is an outcome of selective processes operating differentially on adult males and females. Therefore, revealing the causes of ASR variation in wild populations is essential for understanding breeding systems and population dynamics.  相似文献   

9.
* Here, we evaluate the role of pollen limitation and selfing in the maintenance of labile sex expression in subdioecious plant species. * We used a literature survey to explore which factors correlated with a significant occurrence of hermaphrodites in dioecious species. We developed models to explore the selective maintenance of labile sex expression. The models had similar ecological assumptions but differed in the genetic basis of sex lability. * We found that a significant frequency of hermaphrodites was associated with animal pollination, and that hermaphrodites were 'inconstant' males with perfect flowers, suggesting evolution through the gynodioecious pathway. Models showed that a modifier converting pure males into inconstant males could be maintained under a wide range of reduction in both male and female fitness. Pollen limitation and self-fertilization facilitated invasion of the modifier. Depending on the genetics of sex determination, we found pure dioecy, stable subdioecy (trioecy), and situations where inconstant males coexisted with either pure females or pure males. Under selfing and pollen limitation, certain conditions selected for inconstant males which will drive populations to extinction. * We discuss our results in relation to the evolution towards, and the breakdown of, dioecy, and the ecological and evolutionary implications of labile sex expression.  相似文献   

10.
Resources, sex ratio, and seed production by hermaphrodites covary among natural populations of many gynodioecious plant species, such that they are functionally "more dioecious" as resources become more limiting. Strong correlations among these three factors confound our understanding of their relative roles in maintaining polymorphic sexual systems. We manipulated resource availability and sex ratio and measured their effects on relative fertility and phenotypic selection through the maternal fitness of females and hermaphrodites of Fragaria virginiana. Two results were particularly surprising. First, hermaphrodites showed little variability in fecundity across resource treatments and showed strong positive and context-dependent selection for fruit set. This suggests that variation in hermaphrodite seed production along resource gradients in nature may result from adaptation rather than plasticity. Second, although females increased their fecundity with higher resources, their fertility was unaffected by sex ratio, which is predicted to mediate pollen limitation of females in natural populations where they are common. Selection on petal size of females was also weak, indicating a minimal effect of pollinator attraction on variation in the fertility of female plants. Hence, we found no mechanistic explanation for the complete absence of high-resource high female populations in nature. Despite strong selection for increased fruit set of hermaphrodites, both the strength of selection and its contribution to the maintenance of gynodioecy are severely reduced under conditions where females have high relative fecundity (i.e., low resources and high-female sex ratios). High relative fertility plus high female frequency means that the evolution of phenotypic traits in hermaphrodites (i.e., response to selection via seed function) should be manifested through females because most hermaphrodites will have female mothers. Fruit set was never under strong selection in females; hence, selection to increase fruit set hermaphrodites will be less effective in maintaining their fruiting ability in natural populations with low resources and high female frequency. In sum, both sex ratio and resource availability influence trait evolution indirectly-through their effects on relative fertility of the sexes and patterns of selection. Sex ratio did not impose strong pollen limitation on females but did directly moderate the outcome of natural selection by biasing the maternal sex of the next generation. This direct effect of sex ratio on the manifestation of natural selection is expected to have far greater impact on the evolution of traits, such as seed-producing ability in hermaphrodites and the maintenance of sexual polymorphisms in nature, compared to indirect effects of sex ratio on relative fertility of the sexes.  相似文献   

11.
Many plants combine sexual reproduction with some form of asexual reproduction to different degrees, and lower genetic diversity is expected with asexuality. Moreover, the ratios of sexual morphs in species with gender dimorphism are expected to vary in proportion to the reproductive success of the sexual process. Hence, sex ratios can directly influence the genetic structure and diversity of a population. We investigated genotypic diversity in 23 populations of a facultative, apomictic gynodioecious orchid, Satyrium ciliatum, to examine the effect on genotypic diversity of variation in the frequency of females and in the amount of sexual reproduction. The study involved one pure female, seven gynodioecious (both females and hermaphrodites present) and 15 hermaphroditic populations. Pollinia receipt was higher in hermaphroditic than in gynodioecious populations. Analyses of variation in ISSRs demonstrated that genotypic diversity was high in all populations and was not significantly different between hermaphroditic and gynodioecious populations. We used character compatibility analysis to determine the extent to which recombination by sexual reproduction contributed to genotypic diversity. The results indicate that the contribution of recombination to genotypic diversity is higher in hermaphroditic than in gynodioecious populations, consistent with the finding that hermaphroditic populations received higher amounts of pollinia. Our finding of reduced recombination in gynodioecious populations suggests that maintenance of sex in hermaphrodites plays an important role in generating genotypic diversity in this apomictic orchid.  相似文献   

12.
Gene flow in plant populations is heavily affected by species sexual systems. In order to study the effect of sexual systems on genetic structure, we examined plastid and nuclear DNA of 12 dioecious (males and females) and 18 trioecious (males, females and hermaphrodites) populations of Salix myrsinifolia—a boreal shrub with slow range expansion. Populations were located along latitudinal gradients across submarginal and marginal parts of the range. Individuals of each sex morph were all hexaploid. We identified 10 chloroplast DNA haplotypes and scored 205 polymorphic bands with amplified fragment length polymorphism. We found dioecious populations that differed from trioecious populations via the presence of four unique haplotypes and significant difference in Nei’s gene diversity index (0.119 vs. 0.116) and down-weighed marker value (1.17 vs. 1.02). The latter parameter, together with haplotype and nucleotide diversity, significantly decreased with latitude similar to the expansion front. Also, we found that 89% of hermaphrodite individuals belong to one distinct in tree parsimony network haplotype. This frequency significantly decreased with latitude towards the expansion front. We suspect that the presence of hermaphrodites in trioecious populations may represent a trade-off between the possibility of producing progeny by single hermaphrodites and genetic variability loss through autogamy. S. myrsinifolia benefits from trioecious sexual systems under colonization events. This phenomenon is no longer a gain closer to the core of the species range.  相似文献   

13.
A recent sexual conflict model posits that a form of intersexual conflict may explain the persistence of males in androdioecious (males + hermaphrodites) populations of animals that are being selected to transition from dioecious (gonochoristic) mating to self‐compatible hermaphroditism. During the evolutionary spread of a self‐compatible hermaphrodite to replace females, the selective pressures on males to outcross are in conflict with the selective pressures on hermaphrodites to self. According to this model, the unresolved conflict interferes with the evolutionary trajectory from dioecy to hermaphroditism, slowing or halting that transition and strengthening the otherwise “transitory” breeding system of androdioecy into a potentially stable breeding strategy. Herein, we assess this model using two dioecious and two androdioecious clam shrimp (freshwater crustaceans) to ask two questions: (1) Have hermaphrodites evolved so that males cannot effectively recognize them?; and (2) Do androdioecious hermaphrodites avoid males? Androdioecious males made more mistakes than dioecious males when guarding potential mates suggesting that androdioecious males were less effective at finding hermaphrodites than dioecious males were at finding females. Similarly, in a three‐chambered experiment, focal hermaphrodites chose to aggregate with their same sex, whereas focal dioecious males chose to aggregate with the alternate sex. Together, these two experiments support the sexual conflict model of the maintenance of androdioecy and suggest that hermaphrodites are indeed evolving to avoid and evade males.  相似文献   

14.
The stable coexistence within populations of females, males, and hermaphrodites (subdioecy) is enigmatic because theoretical models indicate that maintenance of this sexual system involves highly restricted conditions. Subdioecy is more commonly interpreted as a transitory stage along the gynodioecious pathway from hermaphroditism to dioecy. The widespread, North American, aquatic plant Sagittaria latifolia is largely composed of monoecious or dioecious populations; however, subdioecious populations with high frequencies of hermaphrodites (mean frequency = 0.50) characterize the northern range boundary of dioecy in eastern North America. We investigated two hypotheses for the origin of subdioecy in this region. Using polymorphic microsatellite loci, we evaluated whether subdioecy arises through selection on standing genetic variation for male sex inconstancy in dioecious populations, or results from hybridization between monoecious and dioecious populations. We found evidence for both pathways to subdioecy, although hybridization was the more common mechanism, with genetic evidence of admixture in nine of 14 subdioecious populations examined. Hybridization has also played a role in the origin of androdioecious populations in S. latifolia, a mechanism not often considered in the evolution of this rare sexual system. Our study demonstrates how hybridization has the potential to play a role in the diversification of plant sexual systems.  相似文献   

15.
In many gynodioecous species, females produce more viable seeds than hermaphrodites. Knowledge of the relative contribution of inbreeding depression in hermaphrodites and maternal sex effects to the female fertility advantage and the genetic basis of variation in female fertility advantage is central to our understanding of the evolution of gender specialization. In this study we examine the relative contribution of inbreeding and maternal sex to the female fertility advantage in gynodioecious Thymus vulgaris and quantify whether there is genetically based variation in female fertility advantage for plants from four populations. Following controlled self and outcross (sib, within-population, and between-population) pollination, females had a more than twofold fertility advantage (based on the number of germinating seeds per fruit), regardless of the population of origin and the type of pollination. Inbreeding depression on viable seed production by hermaphrodites occurred in two populations, where inbreeding had been previously detected. Biparental inbreeding depression on viable seed production occurred in three of four populations for females, but in only one population for hermaphrodites. Whereas the maternal sex effect may consistently enhance female fertility advantage, inbreeding effects may be limited to particular population contexts where inbreeding may occur. A significant family x maternal sex interaction effect on viable seed production was observed, illustrating that the extent of female fertility advantage varies significantly among families. This result is due to greater variation in hermaphrodite (relative to female) seed fertility between families. Despite this genetic variation in female fertility advantage and the highly female biased sex ratios in populations of T. vulgaris, gynodioecy is a stable polymorphism, suggesting that strong genetic and/or ecological constraints influence the stability of this polymorphism.  相似文献   

16.
 A valuable approach to understanding the evolution of gender dimorphism involves studies of single species that exhibit intraspecific variation in sexual systems. Here we survey sex ratios in 35 populations of Wurmbea biglandulosa, previously described as hermaphroditic. We found pronounced intraspecific variation in sexual systems; populations in the northeastern part of the species' range were hermaphroditic, whereas other populations were gynodioecious and contained 2–44% females. Populations with lower annual rainfall were more likely to be gynodioecious, supporting the view that gender dimorphism evolves more frequently in harsher environments. In gynodioecious populations, however, female frequency was not related to either annual rainfall or habitat, indicating that other factors are important in determining sex ratio variation. Females had smaller flowers and shorter stems than did hermaphrodites, potentially providing a basis for resource compensation. A female fecundity advantage may contribute to the maintenance of females in populations because females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites. Received March 2, 2001 Accepted February 25, 2002  相似文献   

17.
Sex determination and evolution of unisexuality in the Conchostraca   总被引:5,自引:3,他引:2  
Clay Sassaman 《Hydrobiologia》1995,298(1-3):45-65
Field collected or laboratory-reared samples of 60 species of conchostracans (representing all extant genera) indicate that males and females are equally common in most species. Deviations from this pattern occur in four lineages.Cyzicus andLeptestheria each include at least one unisexual species; many species of Limnadiinae are either unisexual or characterized by female-biased sex ratios; and Cyclestheriidae are either unisexual or express males in the later generations of their life cycles. Laboratory studies indicate that species with sex ratios near unity are gonochoric (obligately sexual), whereas females in species with female-biased sex ratios are capable of both outcrossing and selfing modes of reproduction. Phylogenetic analysis of patterns of reproduction suggest that sexual reproduction is the primitive condition. Genetic analysis of sexual species indicate that gender is determined by one or a few genetic factors and that the male-determining allele is recessive. The inheritance of gender in androdioecious species (where females are capable of self-fertilization) is similar to that in sexual species. Androdioecy is likely to be the intermediate stage between obligately sexual reproduction and unisexuality in the Limnadiinae. The phylogenetic distribution of sex ratio variation suggests that unisexuality in Cyzicidae, Leptestheriidae, and Cyclestheriidae has arisen independently of that in the Limnadiinae and that these cases have evolved by different evolutionary pathways.  相似文献   

18.
Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. ‘indicator model’ and ‘trade-off model’). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes.  相似文献   

19.
Sex is determined by chromosomes in mammals but it can be influenced by the environment in many worms, crustaceans, and vertebrates. Despite this, there is little understanding of the relationship between ecology and the evolution of sexual systems. The nematode Auanema freiburgensis has a unique sex determination system in which individuals carrying one X chromosome develop into males while XX individuals develop into females in stress-free environments and self-fertile hermaphrodites in stressful environments. Theory predicts that trioecious populations with coexisting males, females, and hermaphrodites should be unstable intermediates in evolutionary transitions between mating systems. In this article, we study a mathematical model of reproductive evolution based on the unique life history and sex determination of A. freiburgensis. We develop the model in two scenarios, one where the relative production of hermaphrodites and females is entirely dependent on the environment and one based on empirical measurements of a population that displays incomplete, “leaky” environmental dependence. In the first scenario environmental conditions can push the population along an evolutionary continuum and result in the stable maintenance of multiple reproductive systems. The second “leaky” scenario results in the maintenance of three sexes for all environmental conditions. Theoretical investigations of reproductive system transitions have focused on the evolutionary costs and benefits of sex. Here, we show that the flexible sex determination system of A. freiburgensis may contribute to population-level resilience in the microscopic nematode's patchy, ephemeral natural habitat. Our results demonstrate that life history, ecology, and environment may play defining roles in the evolution of sexual systems.  相似文献   

20.
Sex ratios are subject to strong frequency-dependent selection regulated by the mating system and the relative male versus female investment. In androdioecious plant populations, where males co-occur with hermaphrodites, the sex ratio depends on the rate of self-fertilization by hermaphrodites and on the relative pollen production of males versus hermaphrodites. Here, we report evolutionary changes in the sex ratio from experimental mating arrays of the androdioecious plant Mercurialis annua. We found that the progeny sex ratio depended strongly on density, with fewer males in the progeny of plants grown under low density. This occurred in part because of a plastic adjustment in pollen production by hermaphrodites, which produced more pollen when grown at low density than at high density. Our results provide support for the prediction that environmental conditions govern sex ratios through their effects on the relative fertility of unisexual versus hermaphrodite individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号